HOMEWORK SET 1

Due Wednesday January 28

- 1) The spin operators for a particle with spin- $\frac{1}{2}$ are given in equations (10-4) and (10-5) of the text.
 - (a) Verify that the operators obey the usual commutation relations, $[S_x, S_y] = i\hbar S_z$, etc.
 - (b) Find the operator S^2 .
- 2) (a) Find the eigenvalues and the normalized eigenvectors of the operator S_x .
 - (b) Imagine that an electron has a spin wave function $\chi = \frac{1}{\sqrt{3}} \begin{pmatrix} \sqrt{2} \\ i \end{pmatrix}$. Find the probabilities that a measurement of S_x would give values $\hbar/2$ and $-\hbar/2$
- 3) A review problem: The radial wave functions for states in hydrogen have a relatively simple form. In particular, the lowest state for each l (i.e. the state with n = l+1) has the form

$$R(r) = Nr^l e^{-r/na_0},$$

where a_0 is the Bohr radius. Find the expectation values of 1/r and of $1/r^2$ for these states.

4) Evaluate the relativistic correction to the kinetic energy,

$$\Delta E_{\rm rel} = \langle \psi | -\frac{1}{8} \frac{p^4}{m^3 c^2} | \psi \rangle$$

for the states considered in Problem 3 above. Your result should be consistent with the general formula

$$\Delta E_{\rm rel} = \frac{1}{2} mc^2 \alpha^4 \frac{1}{n^3} \left[\frac{3}{4n} - \frac{2}{2\ell+1} \right].$$

[Hints: The states ψ are eigenfunctions of our original nonrelativistic Hamiltonian H so you can replace $\frac{p^2}{2m}\psi$ by $(H-V)\psi=(E_n-V)\psi$. Similarly, as we discussed in class, $(\frac{p^2}{2m})^2\psi$ can be replaced by $(E_n-V)^2\psi$. The resulting integrals can be evaluated using your results from Problem 3.]

- 5) In class we solved the time independent Schrodinger equation for an electron at rest in an external field $\vec{B} = B\hat{z}$. The energy operator for this situation is just $H = -\vec{\mu} \cdot \vec{B} = g \frac{eB}{2m} S_z$.
 - (a) Solve the time **dependent** Schrödinger equation $H\chi = i\hbar \frac{\partial}{\partial t} \chi$ starting from an arbitrary initial state $\chi(0) = \begin{pmatrix} a_0 \\ b_0 \end{pmatrix}$.
 - (b) Use your time dependent wave function to compute $\langle S_x \rangle$ and $\langle S_y \rangle$ for the special case $a_0 = b_0 = \frac{1}{\sqrt{2}}$.
 - (c) Describe in words what is happening.