Physics 449

HOMEWORK SET 10

Spring 2009

Due Wednesday May 6

- 36) A proton beam of intensity $0.15 \,\mu\text{A}$ is incident on a thin ^{90}Zr foil target. The target foil has a mass per unit area of $0.6 \,\text{mg/cm}^2$ and the atomic mass of ^{90}Zr is approximately 90 u. A 100% efficient detector $0.25 \,\text{mm}^2$ in area is located 20 cm from the target at $\theta = 45^\circ$. Find the differential cross section in b/sr (1b = 1 "barn" = $10^{-24} \,\text{cm}^2$) if the measured counting rate is 420/s.
- 37) As we saw in class, one can expand a plane wave e^{ikz} in a "partial wave" angular momentum series of the form

$$e^{ikz} = \sum_{\ell} \psi_{\ell}$$

where $\psi_{\ell} = R_{\ell}(r)Y_{\ell}^{0}(\theta, \phi)$. The functions R_{ℓ} can be found by integrating Y_{ℓ}^{0*} times $e^{ikr\cos\theta}$ over θ and ϕ . Our result for $\ell = 0$ was $\psi_{0} = \sin kr/kr$. Use this same procedure to determine the $\ell = 1$ partial wave ψ_{1} . Verify your result by comparing with Bauer's formula,

$$e^{ikz} = \sum_{\ell} (2\ell+1) i^{\ell} j_{\ell}(kr) P_{\ell}(\cos\theta),$$

where the j_{ℓ} functions are given on page 142 of the text.

38) (a) Determine the $\ell = 0$ phase shift for scattering of electrons of energy E = 5 eV from a square-well potential of depth $V_0 = 2 \text{ eV}$ and radius a = 0.05 nm. [Hint: Solve for u(r) inside and outside the well and match the solutions. Remember that u(r) must go to zero at r = 0.]

(b) Find the differential cross section (in b/sr) assuming that contributions from the partial waves with $\ell > 0$ can be neglected.

- 39) Find the differential cross section for scattering from a "perfectly rigid sphere" of radius a (i.e. a potential that goes to infinity for $r \leq a$). Take k = 0.1/nm and ka = 1/3. Include both $\ell = 0$ and $\ell = 1$, but ignore contributions from higher ℓ -values. [Hints: The radial wave functions $u_{\ell}(r)$ must go to zero at r = a. For r > a they are of the form $\alpha_{\ell} j_{\ell}(kr) + \beta_{\ell} n_{\ell}(kr)$. To find the phase shifts take the limit $r \to \infty$ using (8-65) and (8-66). The differential cross section will be of the form $A + B \cos \theta + C \cos^2 \theta$.]
- 40) Starting from the Lorentz transformation (the formulas for z' and t' in terms of z and t) derive, by algebra, the inverse Lorentz transformation (formulas for z and t in terms of z' and t'). You should find that the formulas are identical except for the sign of v.
- 41) Let Δt and Δt' stand for the time difference between two events as measured in S and S' respectively.
 (a) Starting from the Lorentz transformation, find a formula for Δt' in terms of Δt assuming the two events occur at the same place in S.
 - (b) Find a formula for $\Delta t'$ in terms of Δt assuming the two events occur at the same place in S'.

(c) Charged π -mesons at rest in the laboratory have a mean lifetime of 2.6×10^{-8} s. Find the mean lifetime of a beam of π 's moving at a velocity of 0.99c.

42) Suppose A_{μ} and B_{μ} ($\mu = 1, 4$) are any 4-vectors. Show that $\Sigma_{\mu}A_{\mu}B_{\mu}$ is an invariant – *i.e.* a quantity that has the same value in all frames.