Due Wednesday May 6

36) A proton beam of intensity $0.15 \mu \mathrm{~A}$ is incident on a thin ${ }^{90} \mathrm{Zr}$ foil target. The target foil has a mass per unit area of $0.6 \mathrm{mg} / \mathrm{cm}^{2}$ and the atomic mass of ${ }^{90} \mathrm{Zr}$ is approximately 90 u . A 100% efficient detector $0.25 \mathrm{~mm}^{2}$ in area is located 20 cm from the target at $\theta=45^{\circ}$. Find the differential cross section in $\mathrm{b} / \mathrm{sr}\left(1 \mathrm{~b}=1\right.$ "barn" $\left.=10^{-24} \mathrm{~cm}^{2}\right)$ if the measured counting rate is $420 / \mathrm{s}$.
37) As we saw in class, one can expand a plane wave $e^{i k z}$ in a "partial wave" angular momentum series of the form

$$
e^{i k z}=\sum_{\ell} \psi_{\ell}
$$

where $\psi_{\ell}=R_{\ell}(r) Y_{\ell}^{0}(\theta, \phi)$. The functions R_{ℓ} can be found by integrating $Y_{\ell}^{0 *}$ times $e^{i k r \cos \theta}$ over θ and ϕ. Our result for $\ell=0$ was $\psi_{0}=\sin k r / k r$. Use this same procedure to determine the $\ell=1$ partial wave ψ_{1}. Verify your result by comparing with Bauer's formula,

$$
e^{i k z}=\sum_{\ell}(2 \ell+1) i^{\ell} j_{\ell}(k r) P_{\ell}(\cos \theta)
$$

where the j_{ℓ} functions are given on page 142 of the text.
38) (a) Determine the $\ell=0$ phase shift for scattering of electrons of energy $\mathrm{E}=5 \mathrm{eV}$ from a square-well potential of depth $V_{0}=2 \mathrm{eV}$ and radius $a=0.05 \mathrm{~nm}$. [Hint: Solve for $u(r)$ inside and outside the well and match the solutions. Remember that $u(r)$ must go to zero at $r=0$.]
(b) Find the differential cross section (in b / sr) assuming that contributions from the partial waves with $\ell>0$ can be neglected.
39) Find the differential cross section for scattering from a "perfectly rigid sphere" of radius a (i.e. a potential that goes to infinity for $r \leq a$). Take $k=0.1 / \mathrm{nm}$ and $k a=1 / 3$. Include both $\ell=0$ and $\ell=1$, but ignore contributions from higher ℓ-values. [Hints: The radial wave functions $u_{\ell}(r)$ must go to zero at $r=a$. For $r>a$ they are of the form $\alpha_{\ell} j_{\ell}(k r)+\beta_{\ell} n_{\ell}(k r)$. To find the phase shifts take the limit $r \rightarrow \infty$ using (8-65) and (8-66). The differential cross section will be of the form $\mathrm{A}+\mathrm{B} \cos \theta+C \cos ^{2} \theta$.]
40) Starting from the Lorentz transformation (the formulas for z^{\prime} and t^{\prime} in terms of z and t) derive, by algebra, the inverse Lorentz transformation (formulas for z and t in terms of z^{\prime} and t^{\prime}). You should find that the formulas are identical except for the sign of v.
41) Let Δt and Δt^{\prime} stand for the time difference between two events as measured in S and S^{\prime} respectively.
(a) Starting from the Lorentz transformation, find a formula for Δt^{\prime} in terms of Δt assuming the two events occur at the same place in S.
(b) Find a formula for Δt^{\prime} in terms of Δt assuming the two events occur at the same place in S^{\prime}.
(c) Charged π-mesons at rest in the laboratory have a mean lifetime of $2.6 \times 10^{-8} \mathrm{~s}$. Find the mean lifetime of a beam of π 's moving at a velocity of 0.99 c .
42) Suppose A_{μ} and $B_{\mu}(\mu=1,4)$ are any 4 -vectors. Show that $\Sigma_{\mu} A_{\mu} B_{\mu}$ is an invariant - i.e. a quantity that has the same value in all frames.

