HOMEWORK SET 4

Due Wednesday February 18

- 15) Calculate the exchange energy, $\Delta E_{\rm EX} = \langle \phi_{1s}(1)\phi_{2s}(2)|v_{ee}|\phi_{2s}(1)\phi_{1s}(2)\rangle$, for the $(1s)^1(2s)^1$ configuration of helium. This calculation can be done using the same procedure we used in class to find $\Delta E_{\rm DIR}$ for the helium ground state. [Hint: The correct answer is $\Delta E_{\rm EX} = \frac{2^4}{3^6} \frac{Z}{a_0} \frac{e^2}{4\pi\epsilon_0}$.]
- 16) The direct energy contribution for the $(1s)^1(2s)^1$ configuration of helium is given by $\Delta E_{\rm DIR} = \frac{17}{81}$ $\frac{Z}{a_0} \frac{e^2}{4\pi\epsilon_0}$. Using this result together with your result from problem 15 above, predict the energies of the "singlet" (S=0) and "triplet" (S=1) $(1s)^1(2s)^1$ states of helium. The measured energies are -57.37 eV for the singlet and -59.17 eV for the triplet.
- 17) Use the variational method to obtain an upper bound on the energy of the ground state of a particle in a potential well V(x) = Cx for $x \ge 0$ and $V(x) = \infty$ for $x \le 0$. Use a trial wave function $\psi(x) = Nxe^{-\alpha x}$ for $x \ge 0$ and $\psi(x) = 0$ for $x \le 0$, where α is the variational parameter.
- 18) Gasiorowicz Problem 14-9.
- 19) Gasiorowicz Problem 14-11.