## HOMEWORK SET 5

## Due Wednesday February 25

- 20) Determine the number of distinct quantum states for each of the following configurations. In each case list the spectroscopic symbols of the allowed states.
  - (a) two equivalent d electrons [e.g. (3d)<sup>2</sup>].
  - (b) two non-equivalent d electrons [e.g.  $(3d)^1(4d)^1$ ].
  - (c) the configuration  $(4p)^1(4f)^1$ .
  - (d) the configuration  $(2p)^2(3p)^1$ .
- 21) Use Hund's rules to predict the ordering in energy of the states in part (a) of problem 20 above.
- 22) A <sup>4</sup>D state is split by the spin-orbit interaction into a number of energy levels.
  - (a) Indicate the j-value of each level.
  - (b) Use the Lande interval rule to predict the ratios  $\Delta E_1/\Delta E_0$  and  $\Delta E_2/\Delta E_0$ .
- 23) An atom with a  ${}^4\mathrm{F}_{3/2}$  ground state and a  ${}^4\mathrm{D}_{5/2}$  first excited state is placed in a magnetic field of 0.8T. Determine the g-factor and the energy splitting  $(g\,\mu_{\mathrm{B}}B)$  of each level. Then determine the wavelengths of all the emission lines assuming  $\lambda=375\,\mathrm{nm}$  for B=0. Remember that  $\Delta m_j=0,\pm 1$ .