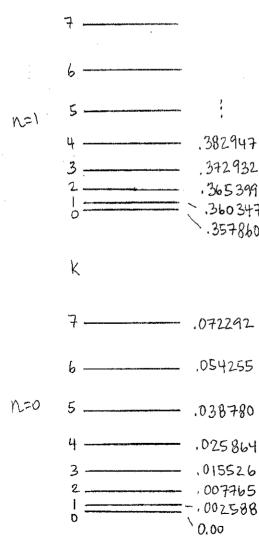
HOMEWORK SET 6

Due Friday March 13

- 24) The potentials V(R) for the H_2 and D_2 molecules are identical, and it follows that the effective spring constants, k, are equal. However, the dissociation energies of the two molecules not quite the same $-4.477\,\mathrm{eV}$ for H_2 and $4.556\,\mathrm{eV}$ for D_2 . The reason is that the energy of the lowest quantum state is $\frac{1}{2}\hbar\omega$ above the potential minimum, and ω is different in the two cases because the deuterium nucleus has roughly double the mass of the proton.
 - (a) Use the given dissociation energies to determine the potential minimum (V_0) for the system and the vibrational energy spacing $(\hbar\omega)$ of each molecule.
 - (b) Predict the dissociation energy of the HD molecule.
- 25) The equilibrium separation of the nuclei in the H₂ and D₂ molecules is 0.074 nm. Find the energy difference between the lowest rotational state and the next allowed rotational state for:
 - (a) H_2 with "parallel spins" (s = 1).
 - (b) H_2 with "antiparallel spins" (s = 0).
 - (c) D_2 in any state with a symmetric spin wave function. The deuterium nucleus has spin 1 and is therefore a boson.
- 26) In this problem we will use information given in the drawing shown at the right to determine some of the properties of the HCl molecule. Assume that the H and Cl nuclei have masses of 1u and 35u respectively, where $1u = 1.66 \times 10^{-27} \text{kg}$. The quantities listed to the right of each level are the energies in units of electron volts.
 - (a) From the excitation energy of the first k=1 rotational state determine the equilibrium internuclear separation R_0 .
 - (b) From the excitation energy of the n=1 vibrational state determine $\hbar\omega$. Use this and the measured dissociation energy (4.47 eV) to determine the parameters k and V_0 of the effective potential.
 - (c) We will now try to predict how much the molecule stretches as it rotates. The potential of parts (a) and (b) can be written in the form $V(r) = -V_0 + \frac{1}{2}k(R-R_0)^2$. Add to this the rotational potential $k(k+1)\hbar^2/2\mu R^2$ and then find the new potential minimum for the k=7 rotational state.
 - (d) To see whether your prediction is correct, extract the value of R_0 for the k=7 rotational state from the observed energy of this state as seen in the diagram.



27) FOR HONORS OR EXTRA CREDIT: Calculation of the hyperfine Zeeman effect in Hydrogen.

As we discussed in class, the Hamiltonian for a hydrogen atom in a magnetic field consists of the usual kinetic and potential energy terms plus the following:

$$H_1 = W_{
m dd} + g_e rac{e}{2m_e} ec{S}_e \cdot ec{B} - g_p rac{e}{2m_p} ec{S}_p \cdot ec{B}$$

where W_{dd} is the dipole-dipole interaction

$$W_{\rm dd} = \frac{\mu_0}{4\pi} g_e g_p \frac{e}{2m_e} \frac{e}{2m_p} \left[\{ 3(\vec{S}_p \cdot \hat{r})(\vec{S}_e \cdot \hat{r}) - \vec{S}_e \cdot \vec{S}_p \} \frac{1}{r^3} + \frac{2\pi}{3} \vec{S}_e \cdot \vec{S}_p \, \delta^{(3)}(\vec{r}) \right]$$

Use degenerate state perturbation theory to find the zero-order energy eigenfunctions and the first-order energy shifts for the hydrogen ground state as a function of magnetic field. The first part of $W_{\rm dd}$ has a zero expectation value, and so only the δ -function term contributes. You may also ignore the very small $\vec{S}_p \cdot \vec{B}$ term. I believe that the problem is easiest if you use the eigenstates of S^2 and S_z (where $\vec{S} = \vec{S}_e + \vec{S}_p$) as your basis states.