Due Wednesday April 8

31) Calculate the lifetime of the 3 s state in hydrogen. Start by using the electric dipole selection rules to decide which states the 3 s state can decay to. When there is more than one possible final state, the total decay probability per unit time (λ) is the sum of the λ 's for the individual transitions.
32) In this problem we will derive a new relationship between the rates for absorption and emission of photons. Imagine a closed box of volume V which contains electromagnetic standing waves. As we showed in Physics 448, the number of standing wave modes per unit volume in the frequency interval $d \nu$ is given by

$$
N(\nu) d \nu=\frac{8 \pi}{c^{3}} \nu^{2} d \nu
$$

The quantity $N(\nu)$ in this formula is known as Jeans number.
(a) Using this result, write an expression for $\rho(\omega)$ (where $\rho(\omega) d \omega$ is the energy per unit volume in the interval $d \omega$) in terms of \bar{n}, where \bar{n} is the average number of photons in each mode. To obtain the result you need to change variables from ν to $\omega=2 \pi \nu$, and remember that the energy of each photon is $\hbar \omega$.
(b) Using this $\rho(\omega)$ write our formulas for the absorption rate, $A \rho(\omega)$, and the emission rate, $A \rho(\omega)+B$, in terms of \bar{n}. The formulas for A and B were derived in class. You should find that the absorption rate is \bar{n} times constants while the emission rate $\bar{n}+1$ times the same constants.
33) Consider a system of equally spaced energy levels, $\epsilon_{\mathrm{s}}=\left(s+\frac{1}{2}\right) \epsilon_{0}$ where $s=0,1,2, \cdots$ with degeneracy $g_{s}=2$ for each level.
(a) Find the total energy of the system at $T=0$ (i.e. the energy of the ground state) if the system contains 12 identical fermions.
(b) Suppose we now "raise the temperature" by adding $4 \epsilon_{0}$ of energy. Make a table listing all possible energy distributions and indicate the number of distinct arrangements for each case. [Hint: I find 9 different distributions and a total of 42 distinct arrangements.]
(c) Find the average population $\left\langle n_{\mathrm{s}}\right\rangle$ of each level.
(d) Make a plot showing $\left\langle n_{\mathrm{s}}\right\rangle$ as a function of energy. Estimate the "temperature" from the graph and give T in units of ϵ_{0} / k. Then plot on the same graph the distribution predicted by the Fermi-Dirac formula for your value of T. [Hint: To find T first choose μ so that $n_{\mathrm{s}} / g_{\mathrm{s}}$ is $\frac{1}{2}$ at the right energy. Then make a guess for T by calculating the expected value of $n_{\mathrm{s}} / g_{\mathrm{s}}$ at $\epsilon=\mu+k T$ and $\epsilon=\mu-k T$.]
34) (a) Find the Fermi energy of copper. The density of Cu is $8.92 \mathrm{~g} / \mathrm{cm}^{3}$, and there is one conduction electron per atom.
(b) Estimate the number of conduction electrons per unit volume with energy greater than $\epsilon_{\mathrm{F}}+0.1 \mathrm{eV}$ for copper at room temperature $(k T=0.025 \mathrm{eV})$.
(c) Estimate the electronic specific heat at room temperature and compare with the atomic specific heat $C_{v}=3 R /$ mole.
35) Find the energy difference between ϵ_{F} and the chemical potential μ for a system with $k T=0.01 \epsilon_{\mathrm{F}}$ and $g(\epsilon)=C \epsilon^{1 / 2}$. The starting point is to recognize that the total number of particles is the same at
all temperatures. At $T=0$ all states are filled up to ϵ_{F}, so

$$
\int_{0}^{\infty} g(\epsilon) f(\epsilon) d \epsilon=\int_{0}^{\epsilon_{F}} g(\epsilon) d \epsilon \quad \text { where } \quad f(\epsilon)=\frac{1}{e^{(\epsilon-\mu) / k T}+1}
$$

To begin divide the left-hand integral into one that extends from 0 to ϵ_{F} plus a second that runs from ϵ_{F} to ∞. Then combine the two $\left(0, \epsilon_{\mathrm{F}}\right)$ integrals and combine the terms using the identity

$$
\frac{1}{e^{x}+1}+\frac{1}{e^{-x}+1}=1
$$

Next change the integration variables using $x=\frac{(\epsilon-\mu)}{k T}$ in the $\left(\epsilon_{\mathrm{F}}, \infty\right)$ integral. For the $\left(0, \epsilon_{\mathrm{F}}\right)$ integral use $x=-\frac{(\epsilon-\mu)}{k T}$ and interchange the integration limits to absorb the $-\operatorname{sign}$. All the way through you need to be careful about the integration limits. Now assume that $\mu \gg \mathrm{kT}$, which lets you extend one of the integration limits to ∞. At this point notice that the integrands go quickly to zero for $x \gg 1$ and so we only need $g(\epsilon)$ for ϵ close to μ. So, make a Taylor series expansion of g about ϵ_{F} or μ and try to evaluate the integrals. It is safe to use the approximations $k T \ll \epsilon_{F}$ and $\epsilon_{F}-\mu \ll k T$. You will probably need $\int_{0}^{\infty} \frac{x}{e^{x}+1} d x=\frac{\pi^{2}}{12}$.

