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Disorder-induced valley-orbit hybrid states in Si quantum dots
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Quantum dots in silicon are promising candidates for the implementation of solid-state quantum information
processing. It is important to understand the effects of the multiple conduction band valleys of silicon on the
properties of these devices. Here we present a systematic effective mass theory of valley-orbit coupling in
disordered silicon systems. This theory reveals valley-orbit hybridization effects that are detrimental for storing
quantum information in the valley degree of freedom, including nonvanishing dipole matrix elements between
valley states and altered intervalley tunneling.
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I. INTRODUCTION

Isolated electrons in semiconductor systems are a promising
candidate for quantum computation because they exhibit
excellent control and decoherence properties.1 Much recent
progress has led to demonstrations of both spin- and charge-
based qubits in GaAs2–5 and Si.6–8 While Si has better
spin decoherence properties than GaAs,9 silicon’s nontrivial
conduction band valley structure is a complication.10

The presence of the valley degree of freedom in Si quantum
dot devices can lead to difficulty in isolating a two-state system
to use as a qubit, because valley splitting energies can be
the same order as both Zeeman splittings and orbital energy
spacings.10–12 On the other hand, it has been proposed to
harness this valley degree of freedom to define noise-resistant
qubits.10,13,14 Previous studies of valley states in Si have mainly
focused on an idealized picture of the valley and orbital physics
in which the system is taken to be disorder free, and hence
the valley and orbital degrees of freedom are good quantum
numbers for the system.15,16

It has been recognized that structural disorder, such as
atomic steps at the heterostructure interface, alloy disorder,
or other types of correlated randomness, can introduce new
effects such as intervalley tunneling.17,18 Furthermore, recent
experimental evidence for disorder-influenced valley-orbit
physics has been found in both metal-oxide-semiconductor
(MOS)19,20 and Si/SiGe systems.8,21 Studying disorder in
silicon is especially challenging, since the conduction band
valley states couple atomic-scale disorder to the micron-scale
electron confinement that is typical of quantum dots. To ana-
lyze this problem, researchers have used computationally in-
tensive numerical techniques such atomistic tight binding,22,23

or analytical approaches that assume the effective mass theory
holds with only minor corrections necessary.15,18,24

In this paper, we develop a systematic disorder-expansion
technique that successfully reproduces the results of atomistic
simulations, while retaining the appealing physical intuition
and computational efficiency of effective mass theories. Using
this technique, in addition to the valley mixing matrix elements
noticed previously, we identify matrix elements that corre-
spond to valley-orbit hybridization, which were previously
studied in an approximation using the two lowest energy
z states.25 We also show that the presence of these matrix
elements leads to the emergence of effects not observed in
previous analytical treatments. In particular, we show that

disorder leads to finite dipole matrix elements between valley
states, and quantitative corrections to intervalley tunneling.
Both effects are detrimental to quantum information stored in
valley states.

II. DISORDER-EXPANSION EFFECTIVE MASS THEORY

In Si quantum dots confined to a quantum well in the
absence of disorder, one can show through tight-binding or
effective mass theories that the energy eigenstates �i,±(r) form
symmetric and antisymmetric valley doublets:15

�i,±(r) = 1√
2

[u−k0 (r)e−ik0z ± uk0 (r)eik0z]hi(r), (1)

where r is the spatial position, hi is the electronic envelope
function for the ith orbital, and u±k0 is the periodic part of
the Bloch function located at the conduction band minima
k = ±k0ẑ. Here, k0 = 0.82(2π/a) is the position of the valley
minimum, and a = 0.543 nm is the cubic lattice spacing in Si.

To calculate the effects of disorder on valley states in Si
accurately, researchers have previously relied on atomistic
tight-binding techniques22,23,26,27 which are numerical and
extremely expensive computationally. Here, we present a
semianalytical technique based on a systematic expansion in
the matrix elements of disorder. This technique allows us to
understand analytically and compute accurately the effects of
interface disorder much faster than was previously possible.

We consider an unperturbed problem consisting of a lateral,
two-dimensional confinement potential V (x,y) that describes
a quantum dot or other device, and a one-dimensional,
vertical confinement potential U (z) that includes the sharp
interfaces, the quantum well barriers, and other slowly varying
components such as an applied electric field. Since this
problem is separable, the resulting wave function is written as
�i,j (r) = Fi(x,y)ψj (z), where F (x,y) is the lateral envelope
function, i is the x-y orbital index and j is the subband index.15

We solve the x-y problem using the effective mass equation,[
− h̄2

2mt

(
∂2
x + ∂2

y

) + V (x,y)

]
Fi(x,y) ≡ H 0

xyFi(x,y)

= εiFi(x,y), (2)

where H 0
xy is the effective mass Hamiltonian, εi is the

energy associated with the envelope function Fi(x,y), and
mt = 0.19 m0 is the transverse effective mass in Si, with m0 the
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bare electron mass. For Si, the longitudinal effective mass, used
in the z direction problem, is ml = 0.91 m0. The z problem
is described similarly, with an unperturbed Hamiltonian H 0

z .
However, the solution method is different because H 0

z includes
sharp interface potentials that couple different valley states.
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FIG. 1. (Color online) Calculation of low-lying energy eigen-
states and electric dipole moments for a three-dimensional (3D)
quantum dot in a quantum well with interface disorder, demonstrating
that valley-orbit mixing induces a substantial dipole moment. The
simulation geometry (inset) has a quantum well thickness of 10 nm
and a barrier height of 150 meV. The parabolic quantum dot is
circular in the x-y plane, with a diameter of L = 28.3 nm. Disorder
is introduced as a rectangularly shaped bump (black region) in the
quantum well barrier, with an x width of Wx = 2L, a y width
of Wy = 4L, a height of a single atom, and a center position at
(x0,y0) = (−0.7L,−0.7L). The top two curves show the components
of the dipole moment p, defined in Eq. (5), along the x̂ (dashed)
and ŷ (dash-dotted) directions, as a function of the electric field
applied along ẑ. The lower set of solid curves shows the lowest six
energy levels in the quantum dot, measured relative to the ground
state. At low fields, these form two manifolds: a lower, S-like doublet
and an upper P -like quadruplet. Disorder introduces two distinct
effects: valley mixing (VM) between states in the same valley doublet,
and valley-orbit hybridization (VOH) between states in different
valley doublets. The dipole moment is typically substantial, but it
is suppressed near the VM-induced anticrossing indicated by the
vertical dashed line. A second anticrossing occurs at a higher field,
where the first excited state changes from valley-like to orbital-like,
and is accompanied by a large change in the dipole moment.

There are a number of well-established techniques to solve this
one-dimensional (1D) problem, including augmented effective
mass treatments15 and tight-binding techniques,22 which yield
solutions of the form noted in Eq. (1). The results shown below
are obtained using the 1D tight-binding treatment.

We now introduce disorder through the perturbation poten-
tial D(r). For the “bump” geometry shown in Fig. 1, D(r) is
zero everywhere except for the small black region, where it
has the same height as the barrier potential. We write the full
Schrödinger equation, including the disorder potential, as[

H 0
xy + H 0

z + D(r)
]
φl(r) = Elφl(r). (3)

We solve this equation by expanding in terms of the unper-
turbed basis set:

φl(r) =
∞∑

j,k=1

αl
jkFj (x,y)ψk(z), (4)

where αl
jk are the expansion coefficients. The problem then

reduces to a matrix eigenvalue problem for the coefficients
αl

jk and the energies El .
The expansion described in Eqs. (3) and (4) must be

truncated to find a numerical solution. However, the method is
guaranteed to succeed if a sufficiently large basis set is used.
Since matrix elements of the disorder potential D(r) can be
large, we may need many basis functions to obtain quantitative
accuracy. In the problems studied below, accurate, converged
solutions can be obtained reasonably quickly by using tens
of the ψk(z) basis functions and tens of the Fj (x,y) basis
functions, leading to a dense effective Hamiltonian matrix
with dimensions N × N , where N ∼ 100 to 500.

III. APPLICATION TO QUANTUM DOT SYSTEMS

We now apply this disorder-expansion technique to calcu-
late the eigenstates of a single quantum dot, and the tunneling
coefficients for a double quantum dot, in the presence of a
disordered interface. Many previous analytic treatments of dis-
ordered interfaces considered only the effects of VM between
the two low-lying valley states. Here, the disorder-expansion
method allows us to treat both VM and VOH, which describes
the mixing of orbital and valley degrees of freedom, and is
observed only when the basis includes more than one orbital
degree of freedom.25 When VOH is significant, the electric
dipole moment difference between the lowest two states,

p = e

∫
d3r(|φ1(r)|2 − |φ0(r)|2)r, (5)

where −e is the electron charge, can also be significant. In
contrast, Eq. (5) yields p = 0 when φ0 and φ1 represent pure
pure orbital states, and is on the scale of the atomic lattice
spacing when φ0 and φ1 are pure valley states. For qubit
applications, a finite dipole moment difference makes the
system susceptible to dephasing by charge noise.2,28,29

We consider the specific quantum dot geometry shown in
Fig. 1. For simplicity, we choose a two-dimensional (2D)
parabolic confinement potential for the quantum dot with
an energy level spacing of h̄ω = 0.5 meV, corresponding
to a characteristic dot size of L = √

h̄/(mtω) = 28.3 nm.
We choose the lateral dimensions of the bump perturbation
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to be of order of L, as consistent with recent structural
characterization of Si/SiGe heterostructures;30 specifically, we
use Wx = 2L and Wy = 4L. The height of the bump is taken
to be a single atom. The quantum well width is 10 nm,
with a barrier height of 150 meV. We compute the z-basis
functions within the 1D tight-binding method described in
Ref. 22. The full 3D calculations are carried out using the
disorder-expansion framework described above, with a basis
of size 5(x) × 5(y) × 30(z). The results are of good accuracy,
as described in Appendix A.

The results of our single-dot calculations are shown in Fig. 1
as a function of the perpendicular electric field. The curves at
the top of the plot, px and py , are the x̂ and ŷ components of
the electric dipole moment. For the device specifications used
here, the dipole moment is typically comparable to eL. Its
nonmonotonic dependence on the perpendicular electric field
can be understood by examining the energies of the lowest
six energy eigenstates of the quantum dot, shown in the lower
portion of Fig. 1. At low fields, the lowest set of six energy
eigenstates splits into two orbital manifolds. Each of these
manifolds is further split by a small valley splitting of order
0.1 meV. As the field is increased, the lowest two states undergo
successive transitions, corresponding to level anticrossings: a
VM transition at about 2 × 106 V/m, and a VOH transition
at about 7 × 106 V/m. The VM anticrossing is caused by
a competition between two different confinement potentials:
the quantum dot and the effective confinement caused by
disorder. The dipole moments are strongly suppressed at the
VM anticrossing, as shown in Fig. 1, although the magnitude
of p is never zero. We note that in the limit of large orbital
energy spacing h̄ω, the dipole moment scales approximately
as 1/(h̄ω), as consistent with the lowest order perturbation
theory. Therefore, two methods are available to help suppress
the unwanted dipole moment: using smaller dots and working
at fields corresponding to the VM anticrossing.

We now study the impact of VOH on interdot tunneling. As
noted in Refs. 18 and 25, structural disorder induces VM, so the
z component of the wave function is no longer well described
by its unperturbed eigenstate. Since disorder varies spatially,
the z composition of the wave function will be different from
dot to dot. This leads to intervalley tunneling, meaning that
an electron can change valley indices when tunneling between
two dots.17 When quantum information is stored in the valley
indices, intervalley tunneling constitutes a loss of information.
Here, we build on previous work18 by considering tunneling
between the two sides of a double quantum dot, and by
including VOH effects using the disorder-expansion technique
described above.

We again adopt a simple model for interface disorder: a
rectangular bump at the quantum well interface, as shown
in the inset of Fig. 2. In this calculation, we take the bump
width to be infinite in the y direction, but variable in the x

direction. As anticipated in Ref. 18, the intra- and intervalley
tunnel rates are comparable when the bump width, analogous
to the disorder correlation length, is comparable to the lateral
widths of the quantum dots. We consider two quantum
dots in a biquadratic potential. The individual dot potentials
have circular symmetry, with a diameter of L = 28.3 nm,
and an interdot separation of d = 144 nm. We define the
states L± and R± to be the left- and right-localized states,
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FIG. 2. (Color online) The intervalley tunnel rate τ−+ =
〈L−|H |R+〉 between two sides of a double quantum dot in the
presence of a bump at the quantum well interface, as a function
of the bump position x0. Here, the height of the bump is one atom,
L− refers to the lowest left-localized state, and R+ refers to the
first excited right-localized state. A schematic of the calculation
geometry is shown in the inset. In the absence of disorder, the ±
indices refer to unperturbed valley states. Results are shown for
bumps with widths Wx = L/2, L, and 2L in the x direction, and
infinite widths in the y direction. The solid curves are computed
using the disorder-expansion framework described in the main text,
with a basis of size 50(x) × 1(y) × 10(z), while the dashed line is an
alternative result for W = 2L, with a basis of size 1(x) × 1(y) × 2(z),
which does not admit VOH effects. For the calculations shown here,
the dimensions of the individual dots are the same as in Fig. 1, and
we assume an electric field of 2 × 105 V/m applied perpendicularly
to the quantum well. The intervalley tunneling rate is substantial over
a wide range of bump positions and widths.

obtained from the lowest two eigenstates of the left and right
individual confinement potentials. All four states L± and R±
are computed within the disorder-expansion framework using
a basis set of size 50(x) × 1(y) × 10(z). (See Appendix A for
convergence details.)

To calculate the tunneling, we compute the matrix element
of the total, double dot Hamiltonian between left- and right-
localized states. Technical details for efficiently computing
this matrix element can be found in Appendix B. We run our
calculation at a low applied electric field, F = 2 × 105 V/m,
so that in the absence of disorder, the lowest two states in
each dot form a valley doublet. This is the regime where
the valley index is most likely a good quantum number for
quantum computing. With no disorder, the x and z directions
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are separable, so the intervalley tunneling term is zero:

τ−+ = 〈L−|H |R+〉/h = 0, (6)

where h is Planck’s constant. However, the introduction of
an atomic bump leads to significant intervalley tunneling,
as shown in Fig. 2. In the calculation, the dot geometry is
chosen such that the interdot, intravalley tunnel rate in the
absence of disorder is 2 GHz, which is a typical value observed
in experiments.8 Over a wide range of bump positions, we
confirm that the intervalley tunnel rate is comparable to the
intravalley tunnel rate. We find that the intervalley tunnel
rate is largest when the bump in the interface is centered
over one of the quantum dots. The dashed line in Fig. 2
corresponds to only using one x-basis function, one y-basis
function, and two z-basis functions, corresponding to the
simple model considered in previous studies,18 where the VOH
coupling is effectively turned “off.” Although the approximate
solution is qualitatively similar to the accurate solution, it is
not quantitatively accurate.

Our theoretical results for intervalley tunneling are in
reasonable agreement with recent experiments in a double
quantum dot, where tunnel rates were measured between a
(2,1) electron occupation and two different (1,2) occupations,
corresponding to the ground and lowest excited states.8

The small energy splitting between the (1,2) configurations
(∼45 μeV) is indicative of a large valley component in the
excited state. [Orbital excitations are typically larger, in the
range 0.1–1 meV (Ref. 31).] The fact that comparable tunnel
rates were observed for both (1,2) states (2.7 GHz vs 3.5 GHz)
indicates a strong intervalley matrix element.

Finally, it is interesting to compare the numerical complex-
ity of our scheme to that of a tight binding method. For the
double dot considered here, we achieve good accuracy with a
basis of size N = 500. The computational bottleneck in this
procedure is diagonalizing the resulting N × N dense matrix,
which takes a few seconds on a personal computer. In contrast,
the number of atoms involved in a 3D tight binding calculation
(excluding atoms outside the quantum well) corresponds to
including several hundred million atomic sites, which requires
run-times of many hours on modern supercomputers.27

IV. DISCUSSION

We have presented a disorder-expansion effective mass
technique for studying disordered silicon systems. This
framework provides results consistent with computationally
intensive tight-binding calculations,23 while retaining the
calculational simplicity and intuitive appeal of the effective
mass approach. This approach reveals additional valley-orbit
hybridization effects, which are responsible for a nonvanishing
dipole moment between valley states, as well as intervalley
tunneling.

Both valley mixing and valley-orbit hybridization are
problematic for storing quantum information in valley states,
since in the presence of disorder they no longer afford
protection against charge noise, and do not have consistent
quantum numbers between dots. We find that the dipole
moment can be mitigated by operating the device at a specific
applied electric field, and also by making the dot smaller.

In this paper, we considered a very simple model of atomic
disorder (single-atom bumps). We showed that even such
a simple structure can have a dramatic effect on the purity
of the valley degree of freedom. It would be interesting to
apply this method to more complicated disorder structures,
such as random surfaces and bumps of varying heights in
the z direction. Error analysis similar to that performed in
Appendix A could be performed to assess the performance
of the disorder-expansion method for more general disorder
profiles.
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APPENDIX A: CONVERGENCE OF
THE DISORDER EXPANSION

In this Appendix, we examine the convergence properties
of the disorder-expansion method introduced in the main
text. To do this, in Fig. 3 we compare the performance of
our disorder-expansion method in a 2D system to results
obtained using the tight-binding method of Refs. 21 and 32.
Specifically, Fig. 3(a) shows the x component of the electric
dipole moment p, defined in Eq. (5). To be able to compare
the disorder-expansion results to tight binding in a reasonable
time, we used a 2D system, so we altered the disorder from
the single-atom square described in the main text. Analogous
to the simple disorder in 3D used in the main text, here we
consider a single-atom bump in ẑ with x width Wx = 70.2 nm,
corresponding to 300 atoms. This 2D tight-binding problem
can be computed in about 10 min on a personal computer and
compared to the results of the disorder expansion. As in the
main text, an electric field is applied along the ẑ direction with
strength 2 × 105 V/m, the dot has width L = 28.3 nm, and
the quantum well is 10 nm thick with barrier height 150 meV.

In Fig. 3(a), the solid curve is the tight-binding result,
while the dashed lines indicate different numbers of z-basis
functions: the most inaccurate is 2, the second most is 10, the
third most is 20, and the most accurate is 40. In all cases, five x-
basis functions were used. As more z-basis functions are used,
the disorder-expansion results become more accurate (i.e., they
approach the tight binding results). In order to quantify this
further, we plot in the inset the percent error in the left peak
as a function of mz, the number of z-basis functions used. For
large mz, we observe that the error falls off like m−1.005±0.007

z .
Figure 3(b) shows the intervalley tunneling computed using

both disorder-expansion and tight-binding techniques. As in
panel (a), the black line corresponds to the 2D tight-binding
calculation, while the colored lines corresponding to disorder-
expansion calculations with different numbers of z-basis
functions used. The system parameters used are identical
to the dipole calculation, except that the disorder-expansion
calculations use 35 x-basis functions in all cases, and there are
two dots, separated by a distance d = 150.3 nm.
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FIG. 3. (Color online) (a) Comparison of disorder-expansion
calculations for a dipole moment with 2D tight-binding calculations.
A bump one atom high in ẑ with a width in x̂ of 300 atoms is centered
at the lateral position x0. As in the main text, an electric field is
applied along the ẑ direction with strength 2 × 105 V/m, the dot has
width L = 28.3 nm, and the quantum well is 10 nm thick with barrier
height 150 meV. The solid curve is the tight-binding result, while the
dashed lines correspond to different numbers of z-basis functions:
the most inaccurate curve is 2, second most is 10, third most is 20,
and and most accurate is 40. In all cases, five x-basis functions were
used. Assuming the tight binding results reflect exact solutions, the
inset shows the percent error in the left peak of the main plot as a
function of mz, the number of z-basis functions used. The curve fit
for large mz indicates that the percent error scales like m−1.005±0.007

z

for large mz. The cross (×) indicates the percent error obtained using
eight z functions from an augmented basis set described in Appendix
A. (b) Comparison of disorder-expansion calculations for intervalley
tunneling with 2D tight-binding calculations. The disorder and system
parameters are identical to panel (a), except that two dots are used, and
are separated by a distance d = 150.3 nm. As in panel (a), the solid
line indicates tight-binding results, while the dashed lines correspond
to successively more z-basis functions. Even though tunneling is very
sensitive to small tails of the wave functions along x̂, the 35 x-basis
functions used here are sufficient to ensure stability such that the
number of z-basis functions used limits the accuracy.

As is clear from Fig. 3, the disorder-expansion technique
does converge to the tight-binding results as expected, with
the essential physics captured at a modest number of basis
functions. However, this convergence can be slow, particularly
with respect to the ẑ basis functions. This is because the
perturbations we consider involve large energy scales, which
effectively shift the positions of the ẑ energy eigenstates. We

are effectively trying to reconstruct this shift in position by
including many unperturbed basis states.

We can achieve higher accuracy with fewer basis functions
by tailoring our initial choice of basis to the particular type
of disorder we include in our system. For example, the types
of disorder that we considered in this paper all were of the
form of single-atom bumps. This suggests that a better z basis
would be to include eigenstates not only of the unperturbed
quantum well, but also a quantum well that is narrower by the
bump height. Effectively, this means that we are supposing
that the true z solution will be a sum of eigenstates of
the bare well and eigenstates of the well where the bump
covers the entire system. By using this tailored basis, we
can achieve very high accuracy with many fewer z-basis
functions. In the inset of Fig. 3(a), the cross (×) indicates the
percent error obtained by using this augmented basis with only
eight z functions, demonstrating significantly better accuracy
than the “brute-force” approach with significantly more basis
functions. Therefore, a promising direction for future study
would be to develop physics-informed, tailored basis sets that
can help speed convergence for more general forms of disorder.

APPENDIX B: EFFICIENT COMPUTATION
OF MATRIX ELEMENTS

The initial, unperturbed basis used for the disorder-
expansion calculation is separable in at least ẑ and x̂-ŷ (and
sometimes in x̂ and ŷ individually as well). The disorder
perturbation mixes the eigenstates of the unperturbed problem,
making them no longer separable. One can then use these 3D
states to compute matrix elements of desired operators directly.
However, we find that in practice the direct computation of
these 3D matrix elements is computationally intensive, and
often takes longer than the disorder-expansion calculation
itself.

To bypass this bottleneck, we exploit the separability of our
initial basis states in order to speed up calculation of matrix
elements. While this procedure is not strictly necessary, it
enables us to speed up our calculations greatly. We begin with
the calculation of the dipole matrix element, Eq. (5) in the
main text. For simplicity of presentation, we show here the
computation of only px ; the calculation of py follows similarly.
Recalling the definition of the expansion in Eq. (4), we write

px =
∑

j,k,l,m

∫
d3rx

(
α1

jkα
1
lmFjFlψkψm − α0

jkα
0
lmFjFlψkψm

)

=
∑
i,j,k

(
α1

jkα
1
lk − α0

jkα
0
lk

) ∫
dxdy · xFjFl. (B1)

Here, we suppress the arguments of the F and ψ functions for
notational simplicity. From this, we see that to compute px ,
we can precompute the matrix

M
px

j,l =
∫

dxdy · xFjFl, (B2)

which has dimensions equal to the number of x-y basis
elements used. Then, computing px reduces to a simple sum:

px =
∑

j,k,l,m

(
α1

jkα
1
lk − α0

jkα
0
lk

)
M

px

j,l . (B3)
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Finally, we note that in the case of an initial basis that is
separable in both x̂ and ŷ, the formula simplifies even further,
since px is then diagonal in both ŷ and ẑ.

Next, we consider the calculation of the intervalley tunnel-
ing matrix elements. We rewrite Eq. (6) from the main text
as

τ−+ = 〈L−|(VDD(x,y) − VR(x,y))|R+〉
+ 〈L−|(T̂ + VR(x,y) + Vz(z) + D(r))|R+〉, (B4)

where VDD is the double-dot potential in the x-y plane, VR

is the right-dot potential, T̂ is the kinetic energy operator, and
Vz is the unperturbed potential along ẑ. We have grouped the
second term such that it forms the Hamiltonian corresponding
to the |R+〉 eigenstate, which lets us write

τ−+ = 〈L−|(VDD(x,y) − VR(x,y))|R+〉 + εR+〈L−|R+〉,
(B5)

where εR+ is the energy eigenvalue for |R+〉. By using the same
decomposition technique as we did for the dipole moment
calculation, we can write

τ−+ =
∑
j,k,l

α
L−
jk α

R+
lk

(
MA

j,l + εR+MB
j,l

)
, (B6)

where the matrices are defined by

MA
j,l =

∫
dxdy(VDD(x,y) − VR(x,y))FL

j FR
l (B7)

and

MB
j,l =

∫
dxdyFL

j FR
l . (B8)

Here, the superscript L and R denote basis functions in the
left and right dots, respectively. As before, these matrices can
be precomputed to increase computational speed, reducing the
computation of τ−+ to a sum.
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