APS-DNP 2004 Session DA: Probing the Gluonic and Quark Structure of Matter

projector test

DA Probing the Gluonic and Quark Structure of Matter

DA1. First Experiments with a Polarized Hydrogen Jet Target in RHIC

Willy Haeberli

Department of Physics, University of Wisconsin-Madison

Measuring the Polarization of High-Energy Protons

WHY? HOW?

APS-DNP

W. Haeberli, University of Wisconsin

Chicago October 29, 2004

What accounts for the spin of the nucleon?

The (old) proton spin puzzle: Only ~(20±4)% of proton spin isaccounted for by spins of quarks and antiquarks

DIS of **polarized** HE leptons (e,µ) from **polarized** nucleons at SLAC, CERN, HERA:

Good agreement with two very different experimental methods.....

Chicago October 29, 2004

HERMES internal target

- Pure polarised gas targets: H, D, target
- polarisation: p_T ~ 85%
- target thickness 10¹⁴ H/cm²
- Luminosity: 6*10³³ cm⁻² s⁻¹(D @ 50 m/
- Spin reversal every 120 sec

Factor 100 gain from use of "storage cell" (S. Price)

Gluons: key contributor to the proton spin?

Gluons: Measurements of $\Delta G/G$

from F. H. Heinsius, COMPASS Collab - DIS April 2004

PHENIX and STAR at RHIC will measure ΔG by collisions of longitudinally polarized HE protons - A_{LL}

RHIC: c.m.energies up to 500 GeV

APS-DNP

W. Haeberli, University of Wisconsin

Chicago October 29, 2004

RHIC experiments will measure ΔG

$$A_{LL} = \frac{1}{P_{beam}^2} \frac{N^{\downarrow\uparrow} - N^{\uparrow\uparrow}}{N^{\downarrow\uparrow} + N^{\uparrow\uparrow}}$$

RHIC Spin Probes Gluon polarization p = 0 9 9 jet

G. Bunce DUBNA-SPIN-03

Colliding polarized protons couple directly to gluons (rather than via charge) - measure parton asymmetries.

Measure polarization of gluons through γ , jets, π pi's, heavy quarks.

The RHIC Complex $50 < \sqrt{s} < 500$ GeV

present performance: $L=4x10^{30}s^{-1}cm^{-2}$, $P_{beam} \sim 40\%$

Measuring polarization of proton beam

$$\sigma_{L,R} = \sigma_0 (1 \pm A(\theta)P) \qquad \hat{n} = \hat{k}_{in} \times \hat{k}_{out}$$

"asymmetry" $\varepsilon = PA = \frac{N_L - N_R}{N_L + N_R}$

<u>Reverse P</u> to eliminate instrumental asymmetry

$$\varepsilon = PA = \frac{R-1}{R+1} \text{ with } R = \sqrt{\frac{(N_{\rm L}/N_{R})^{\uparrow}}{(N_{\rm L}/N_{R})^{\downarrow}}}$$

- What mechanism is sensitive to P at high energy?
- Need to know analyzing power A.

Magnetic Moment Scattering

Mott (1929), J. Schwinger (Phys. Rev. 73, 1948)

"It is the purpose of this note to suggest a second mechanism for polarizing fast neutrons - the spin-orbit interaction arising form the motion of the neutron magnetic moment in the in the nuclear Coulomb field."

Analyzing power in small-angle neutron scattering.....

Phil. Mag. 1, 175 (1956) XV. The Scattering of High Energy Neutrons by a Coulomb Field

By R. G. P. Voss* and R. WILSON† The Clarendon Laboratory, Oxford‡

10

Coulomb-nuclear <u>interference</u> ("CNI")

APS-DNP

W. Haeberli, University of Wisconsin

A_N vs momentum transfer

Polarized protons from Hyperon decay (low rate)

FIG. 8. A_N data for pp elastic scattering as a function of -t. The solid curve is the theoretical prediction [2] in the Coulomb-nuclear interference region. \circ is measured at 185 GeV/c [24] and the results of this measurement are indicated by \bullet . The other data points are measured at 300 GeV/c (cross) and 100 GeV/c (diamond) [16], 176 \pm 12 GeV/c (triangle) [17], and at 150 GeV/c (black square) [15], using a polarized target.

CNI Analyzing Power p-Carbon Scattering

need for accurate <u>absolute</u> A_N measurement

Beam Polarization Calibration

Elastic scattering of IDENTICAL particles (pp): beam analyzing power = target analyzing power (Change in reference frame)

- Measure asymmetry ε_{tgt} when unpolarized beam is scattered from **polarized target** of KNOWN polarization P_t - measures A
- Measure asymmetry ε_{beam} when **polarized beam** is scattered from unpolarized target

Both experiments done simultaneously

$$\mathcal{E}_{tgt} = P_t A$$

$$\varepsilon_{beam} = (-)P_b A$$

$$P_b = P_t \Big(\varepsilon_{beam} \big/ \varepsilon_{tgt} \Big)$$

The Polarized Target - Principle

.... and Practice

rare-earth perm. magnets, pole tip 1.5T, max & blBl/ & article for a statement of the second second

> overall design: Tom Wise, UW

- Cooled dissociator nozzle to reduce v and v-spread.
- recombination: dissociation depends on gas flow and nozzle temp
- Beam attenuation: rest gas and intrabeam scattering
- Magnet design (taper, lengths, z-position) needs: velocity distribution, dissociator H output vs gas flow, nozzle T beam forming geometry
- differential pumping

OPTIMIZATION: COMPUTER MODELLING

H-jet sextupole separation magnet system.

Nuclear polarization of H-atoms

APS-DNP

Scattering Chamber (top view)

APS-DNP

W. Haeberli, University of Wisconsin

Chicago October 29, 2004

Recoil Detectors

Recoil detectors (blue beam):

6 detectors 70x64 mm 16 strips (5 mrad each)

Measure

- Energy: 1~7MeV resolution < 50 keV
- TOF: 16~80 ns resolution < 2 ns
- Angle: 10~100 mrad (89.5 84⁰⁾ resolution 5 mrad

Recoil energy vs. time-of-flight

Identifying recoil protons vs recoil angle (=strip #)

pp Analyzing Power 100GeV/c

Polarization of 100 GeV Beam

$$P_{beam} = P_{t \operatorname{arg} et} \left\langle \frac{\varepsilon_{beam}}{\varepsilon_{t \operatorname{arg} et}} \right\rangle = 0.39 \pm 0.03 \text{ (stat)}$$

 $\sim 10^6 \, pp \ events$

Plans:

- study systematic errors and improve statistics for absolute calibration accuracy $\pm 5\%$
- analyze wider t-range to study pp interaction
- bunch field depolarization with 110 bunches
- improved measurement of H_2 contamination of H-beam
- measure beam polarization at injection
- measure blue and yellow beam polarization

H-Jet collaborators:

Wisconsin:, T. Wise, M. Chapman, W.H.
BNL: A. Bravar, G. Bunce, R. Gill, Z. Li,
A. Khodinov, A. Kponou, Y. Makdisi,
W. Meng, A. Nass, S. Rescia, A. Zeler
Kyoto: H. Okada, N. Saito
ITEP-Moscow: I. Alekseev, D. Svirida
IUCF: E. Stephenson
RIKEN-BNL: O. Jinnouchi,
Rikkyo U: K. Kurita
ANL: H. Spinka

pp Analyzing Power 100GeV/c

Recoil angle Recoil energy 89.5° 0.53 MeV

5.3MeV

Plans

Plans:

- improve statistics, study systematic errors for absolute calibration accuracy $\pm 5\%$
- analyze wider t-range to study pp interaction
- bunch field depolarization with 110 bunches
- improved measurement of H₂ contamination of H-beam
- measure beam polarization at injection
- measure blue and yellow beam polarization

RHIC pp accelerator complex

RHIC experiments will measure ΔG

$$A_{LL} = \frac{1}{P_{beam}^2} \frac{N^{\downarrow\uparrow} - N^{\uparrow\uparrow}}{N^{\downarrow\uparrow} + N^{\uparrow\uparrow}}$$

G. Bunce DUBNA-SPIN-03

Colliding polarized protons couple directly to gluons (rather than via charge) - measure parton asymmetries.

Measure polarization of gluons through γ , jets, π pi's, heavy quarks.

HERMES internal target

- Pure polarised gas targets: H, D,
 - target polarisation: $p_T \sim 85\%$
 - Luminosity: 6*10³³ cm⁻² s⁻¹(D @ 50
 - → spin reversal every 120 sec

Factor 100 gain from use of storage cell

What accounts for the spin of the nucleon?

K. Rith DIS 2004

DIS of polarized HE leptons from polarized nucleons at SLAC, CERN, HERA: The (old) proton spin puzzle: Only ~20% of proton spin is accounted for by spins of guarks and antiguarks

Two experimental methods:

- thick solid polarized target + low intensity e or μ beam
- Thin polarized gas target + high intensity beam

Comparison with some models (Not Fitting)

CONCLUSIONS:

- Demonstrated <u>feasibility</u> of accurate beam polarization calibration at high energy
- calibration of p-C polarimeter
- measurement of pp A_N (8 angles, $\pm \sim 10\%$)
- H-jet does not interfere with p-beam life time
- 3% measurement requires <200 hrs with improved beam intensity
- method covers entire energy range of RHIC

one important step towards a precise determination of ΔG

RHIC experiments will measure ΔG

$$A_{LL} = \frac{1}{P_{beam}^2} \frac{N^{\downarrow\uparrow} - N^{\uparrow\uparrow}}{N^{\downarrow\uparrow} + N^{\uparrow\uparrow}}$$

BUT HOW DOES ONE KNOW Pbeam?

PHENIX

■ STAR

Solenoidal field

Polarization of 100 GeV Beam

$$P_{beam} = P_{t \, \text{arg} \, et} \left\langle \frac{\varepsilon_{beam}}{\varepsilon_{t \, \text{arg} \, et}} \right\rangle = 0.40 \pm 0.03$$

Eventual goal of calibration: ±3%

Plans:

- analyze wider t-range to study pp intercaction
- improve statistics
- bunch field depolarization with 110 bunches
- improved measurement of
 - H₂ contamination of H-beam
- measure beam polarization at injection
- measure blue and yellow beam polarization

Forward scattering particle ID ; Correlation of Energy and position

The Polarized Target - Principle

The Polarized Target - Principle

acceptance angle α

H-Jet Design Features

permanent magnet sextupole pole tip field 1.5T

- Sextupoles: rare-earth permanent magnets (gradient up to 6 T/cm)
- Magnet geometry:
 - 2 magnet groups reduce chromatic aberrations
- magnet gaps reduce gas attenuation
- taper increases acceptance
- **RF transitions of high efficiency**
- very uniform guide field to avoid bunch field depolarization
- Field shaping for adiabatic transport

responsible for design: T. Wise UW

H-jet sextupole separation magnet system.

The Polarized Target - Principle

The Polarized Target - Principle

H-Jet Design Features

permanent magnet sextupole pole tip field 1.5T

- Sextupoles: rare-earth permanent magnets (gradient up to 6 T/cm)
- Magnet geometry:
 - 2 magnet groups reduce chromatic aberrations
- magnet gaps reduce gas attenuation
- taper increases acceptance
- **RF transitions of high efficiency**
- very uniform guide field to avoid bunch field depolarization
- Field shaping for adiabatic transport

responsible for design: T. Wise UW