Problem W11:

Using the results from Problem 7.2, find the reflection and transmission coefficients for E = 1.2 U, E = 2.0 U, and E = 10.0 U.

Problem W12:

Using Equation (7.9) in the text, find the transmission coefficient for

- (a) electrons with $E = 3 \,\mathrm{eV}$ on a barrier 3.5 eV high and 0.5 nm wide.
- (a) electrons with $E = 3 \,\mathrm{eV}$ on a barrier $5 \,\mathrm{eV}$ high and $0.5 \,\mathrm{nm}$ wide.
- (a) protons with $E = 3 \,\text{eV}$ on a barrier $5 \,\text{eV}$ high and $0.5 \,\text{nm}$ wide.

Problem W13:

The nuclei 210 Po and 214 Po (Z=84) both decay by α -emission. For 210 Po the α particle has an energy of 5.40 MeV, while for 214 Po the energy is 7.83 MeV. Estimate the half-lives of these nuclei assuming the nuclear radius is 9 fm and barrier collision frequency is $10^{20}/\text{sec}$. Compare your results with the measured half-lives listed in Appendix B. (The calculation in example 7.6 is for a different isotope of polonium.)

Problem W14:

Suppose that a particle of mass m is confined to move in the x-y plane in a two-dimensional box with sides of length $L_x = L$ and $L_y = \frac{1}{2}L$. Find the energies of the 6 lowest states.