Homework #11:

1-2) Brooker 14.2. You can work this by chopping the fiber up into sections of thickness Δz, then finding the ABCD law for each Δz by finding multiplying an ABCD matrix for a lens by that of propagation $\Delta z/n_0$. Neglect terms of order Δz^2 in your ABCD matrix.

3-4) Plot the electric field as a function of position for a single mode “sandwich” with $V=1.5$. What value of the minimum Gaussian waist most closely matches the electric field of the fiber? Add the Gaussian to the plot.

5) Find the relationship between numerical aperture and V-number. If a lens of focal length f and diameter d is used to collect light from the fiber, what fraction of the light will be collected?

6) Light emerging from a multi-mode fiber is collected by a lens of focal length f. What is the diameter of the resulting spot in the focal plane of the lens? Your answer will depend on the wave-length and the V-number as well as f.