\qquad
\qquad
\qquad

EXAM 1

Print your name and section clearly on all five pages. (If you do not know your section number, write your TA's name.) Show all work in the space immediately below each problem. Your final answer must be placed in the box provided. Problems will be graded on reasoning and intermediate steps as well as on the final answer. Be sure to include units wherever necessary, and the direction of vectors. Each problem is worth 25 points. In doing the problems, try to be neat. Check your answers to see that they have the correct dimensions (units) and are the right order of magnitudes. You are allowed one 5 " x 8 " note card and no other references. The exam lasts exactly one hour.
(Do not write below)

SCORE:

Problem 1: \qquad
Problem 2: \qquad
Problem 3: \qquad
Problem 4: \qquad

TOTAL:

\qquad

Possibly useful information:
Acceleration due to gravity at the earth's surface: $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$
For $\mathrm{ax}^{2}+b \mathrm{x}+\mathrm{c}=0, \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
\qquad
\qquad
\qquad

PROBLEM 1

A cannon at sea level protecting the entrance of a harbor has a muzzle velocity of $82.0 \mathrm{~m} / \mathrm{s}$.
a. What is the smallest angle in degrees with respect to the horizontal that will allow it to strike a ship 560.0 m away? (5 pts .)

$$
\mathrm{R}=\frac{\mathrm{V}_{0}^{2}}{\mathrm{~g}} \sin 2 \theta_{0} \Rightarrow \theta_{0}=\frac{1}{2} \sin ^{-1}\left(\frac{\mathrm{gR}}{\mathrm{~V}_{0}^{2}}\right)=\frac{1}{2} \sin ^{-1}\left(\frac{\left(9.80 \mathrm{~ms}^{-1}\right) \cdot(560 \mathrm{~m})}{\left(82.0 \mathrm{~ms}^{-1}\right)^{2}}\right)=\frac{\sin ^{-1}(0.816)}{2}=27.4^{\circ} \text { or } 6.2 . \mathrm{R}^{\circ}
$$

$$
27.4^{\circ}
$$

b. How many seconds after firing at this angle does the cannon ball strike the ship? (5 pts.)

$$
\rightarrow \mathrm{x}-\mathrm{x}_{0}=\left(\mathrm{v}_{0} \cos \theta_{0}\right) \mathrm{t} \Rightarrow \mathrm{t}=\left(\mathrm{x}-\mathrm{x}_{0}\right) /\left(\mathrm{v}_{0} \cos \theta_{0}\right)=(560.0 \mathrm{~m}) /\left[82.0 \mathrm{~ms}^{-1}\right)\left(\cos 27.4^{\circ}\right)=
$$

7.69 sec
c. What is the minimum distance away from the cannon for the ship to be out of its range? (5 pts)

$$
\mathrm{R}=\frac{\mathrm{V}_{0}^{2} \sin \left(2 \cdot 45^{\circ}\right)}{\mathrm{g}}=\frac{\mathrm{V}_{0}^{2}}{\mathrm{~g}}=\frac{\left(82.0 \mathrm{~ms}^{-1}\right)^{2}}{9.8 \mathrm{~ms}^{-2}}=
$$

686 m

d. A second cannon is now placed 30.0 m above the first and aimed at 45° from horizontal. What is the time of flight of a cannon ball from this second cannon? (5 pts.)

$$
\begin{aligned}
& \mathrm{y}=\mathrm{y}_{0}+\mathrm{V}_{0 \mathrm{y}} \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}=0 \Rightarrow \frac{1}{2} \mathrm{gt}^{2}-\mathrm{V}_{0} \sin \left(45^{\circ}\right) \mathrm{t}-\mathrm{y}_{0}=0 \Rightarrow \mathrm{t}=\frac{\mathrm{V}_{0} \sin \left(45^{\circ}\right) \pm \sqrt{\left(\mathrm{V}_{0} \sin \left(45^{\circ}\right)\right)^{2}-4\left(\frac{1}{2} \mathrm{~g}\right)\left(-\mathrm{y}_{0}\right)}}{2 \cdot \frac{1}{2} \mathrm{~g}} \\
& =\frac{58.0 \mathrm{~ms}^{-1} \pm \sqrt{\left(58.0 \mathrm{~ms}^{-1}\right)^{2}-4\left(4.90 \mathrm{~ms}^{-2}\right)(-30.0 \mathrm{~m})}}{9.8 \mathrm{~ms}^{-2}}
\end{aligned}
$$

12.3 sec

e. At what distance from the first cannon does the second cannon's ball strike? (5 pts.)

$$
\mathrm{R}^{\prime}=\mathrm{V}_{0 \mathrm{x}} \mathrm{t}=\left(82.0 \mathrm{~ms}^{-1}\right)\left(\cos 45^{\circ}\right)(12.3 \mathrm{~s})=
$$

First Name: \qquad Last Name: \qquad Section: \qquad

PROBLEM 2

A particle P travels with constant speed on a circle of radius $r=3.00 \mathrm{~m}$ and completes one revolution in 20.0 s . The particle passes through O at $\mathrm{t}=0$.
a. Find the magnitude of the displacement vector of P with respect to O at $\mathrm{t}=7.50 \mathrm{~s} .(5 \mathrm{pts}$.)
$\mathrm{X}=(3.00 \mathrm{~m}) \sin \left(\frac{2 \pi \cdot 7.50 \mathrm{~s}}{20.0 \mathrm{~s}}\right)=2.12 \mathrm{~m}$
$\mathrm{y}=3.00 \mathrm{~m}+(3.00 \mathrm{~m}) \cos \left(\frac{2 \pi \cdot 7.50 \mathrm{~s}}{20.0 \mathrm{~s}}\right)=5.12 \mathrm{~m}$

$d=\sqrt{(2.12 m)^{2}+(5.12 m)^{2}}=$
b. Find the angle in degrees with the x axis of the vector from O to P at $\mathrm{t}=7.50 \mathrm{~s}$. (5 pts.)
$\phi=\tan ^{-1}(\mathrm{y} / \mathrm{x})=\tan ^{-1}(5.12 \mathrm{~m} / 2.12 \mathrm{~m})=$
67.5°
c. During a 5.00 s interval what is the magnitude of the displacement of P? (5 pts.)
$\frac{1}{4}$ revolution: $\quad \mathrm{s}=\sqrt{(3.00 \mathrm{~m})^{2}+(3.00 \mathrm{~m})^{2}}=$
d. What is the magnitude of the velocity of P ? (5 pts .)
$\mathrm{v}=2 \pi \mathrm{r} / \mathrm{T}=2 \pi(3.00 \mathrm{~m}) /(20.0 \mathrm{~s})=$
e. What is the magnitude of the acceleration of P? (5 pts.)
$\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}=\left(0.942 \mathrm{~ms}^{-1}\right)^{2} /(3.00 \mathrm{~m})=$
\qquad
\qquad
PROBLEM 3
Two objects are connected by a rope running over a pulley as shown. The coefficient of kinetic friction between the 5.0 kg object and the table is 0.20 . Ignore the mass of the rope and the mass and friction of the pulley.
a. What is the magnitude of the normal force on the 5.0 kg mass? (5 pts)

$\mathrm{F}_{\mathrm{N}}=\mathrm{mg}=(5.0 \mathrm{~kg})\left(9.8 \mathrm{~ms}^{-2}\right)=$

49 N

b. What is the magnitude of the force of friction on the 5.0 kg mass? (5 pts)
$\mathrm{F}_{\mathrm{K}}=\mu \mathrm{F}_{\mathrm{N}}=(0.20)(49 \mathrm{~N})$

$$
9.8 \mathrm{~N}
$$

c. What is the magnitude of the acceleration of the 2.0 kg mass? (9 pts)

Forces: $5 \mathrm{~kg}: \mathrm{T}-\mathrm{F}_{\mathrm{K}}=\mathrm{m}_{5} \mathrm{a} \Rightarrow \mathrm{T}=\mathrm{F}_{\mathrm{K}}+\mathrm{m}_{5} \mathrm{a}, 2 \mathrm{~kg}: \mathrm{m}_{2} \mathrm{~g}-\mathrm{T}=\mathrm{m}_{2} \mathrm{a} \Rightarrow \mathrm{m}_{2} \mathrm{~g}-\mathrm{F}_{\mathrm{K}}+\mathrm{m}_{5} \mathrm{a}=\mathrm{m}_{2} \mathrm{a}$
$\mathrm{a}=\frac{\mathrm{m}_{2} \mathrm{~g}-\mathrm{F}_{\mathrm{K}}}{\mathrm{m}_{5}+\mathrm{m}_{2}}=\frac{19.6 \mathrm{~N}-9.8 \mathrm{~N}}{5.0 \mathrm{~kg}+2.0 \mathrm{~kg}}=$

$$
1.4 \mathrm{~ms}^{-2}
$$

d. What is the tension in the rope (6 pts) ?
$\mathrm{T}=\mathrm{F}_{\mathrm{K}}+\mathrm{m}_{5} \mathrm{a}=9.8 \mathrm{~N}+(5.0 \mathrm{~kg})\left(1.4 \mathrm{~ms}^{-1}\right)=$
\qquad
\qquad

PROBLEM 4

A 500.0 kg roller coaster starts with a speed of $16 \mathrm{~km} / \mathrm{hr}$. It then descends a hill, which is at an angle of 37° as shown and is 15 m long. The coefficient of kinetic friction between the roller coaster and the track is 0.10 . Note: the cart does not change speed at the instant it changes direction.
a. What is the magnitude of the normal force on the roller coaster during its descent? (5 pts .)

$\mathrm{F}_{\mathrm{N}}=\mathrm{mg} \cos 37^{\circ}=(500.0 \mathrm{~kg})\left(9.8 \mathrm{~ms}^{-2}\right)(0.80)=3.91 \times 10^{2} \mathrm{~N}$

$3,900 \mathrm{~N}$

b. What is the magnitude of the force of friction during its descent? (5 pts.)
$\mathrm{F}_{\mathrm{K}}=\mu_{\mathrm{K}} \mathrm{F}_{\mathrm{N}}=(0.10)\left(3.91 \times 10^{2} \mathrm{~N}\right)=$
c. What is the magnitude of the acceleration of the roller coaster during its descent? (5 pts.)

Define the x -axis along the direction of the hill:
$\mathrm{mg} \sin 37^{\circ}-\mathrm{F}_{\mathrm{K}}=\mathrm{ma}_{\mathrm{x}} \Rightarrow \mathrm{mg} \sin 37^{\circ}-\mu_{\mathrm{K}} \mathrm{mg}=\mathrm{ma}_{\mathrm{x}} \Rightarrow \mathrm{a}_{\mathrm{x}}=\left(\sin 37^{\circ}-(0.10) \cos 37^{\circ}\right)=$
$\left(9.8 \mathrm{~ms}^{-2}\right)(0.60-(0.10)(0.80))=5.12 \mathrm{~ms}^{-1}$

$$
5.1 \mathrm{~ms}^{-2}
$$

d. What is the speed in $\mathrm{km} / \mathrm{hr}$ of the roller coaster exactly at the end of the hill? (5 pts.)
$\mathrm{v}_{0 \mathrm{x}}=16 \frac{\mathrm{~km}}{\mathrm{hr}}\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right)=16 \frac{\mathrm{~km}}{\mathrm{hr}}\left(\frac{1 \mathrm{~m} / \mathrm{s}}{3.6 \mathrm{~km} / \mathrm{hr}}\right)=4.4 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{v}^{2}=\mathrm{v}_{0 \mathrm{x}}^{2}+2 \mathrm{a}_{\mathrm{x}}\left(\mathrm{x}-\mathrm{x}_{0}\right) \Rightarrow \mathrm{v}=\sqrt{\left(4.4 \mathrm{~ms}^{-1}\right)^{2}+2\left(5.1 \mathrm{~ms}^{-2}\right)(15 \mathrm{~m})}=13.1 \frac{\mathrm{~m}}{\mathrm{~s}}\left(\frac{3.6 \mathrm{~km} / \mathrm{hr}}{1 \mathrm{~m} / \mathrm{s}}\right)=$

$47 \mathrm{~km} / \mathrm{hr}$

e. How far in meters does the roller coaster travel on the flat track after the hill? (5 pts.)
$a=-\frac{F_{K}}{m}=-\frac{\mu \mathrm{mg}}{m}=-\mu \mathrm{g}=-0.98 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, \quad \mathrm{v}^{2}=0=\mathrm{v}_{0}^{2}+2 a\left(\mathrm{x}-\mathrm{x}_{0}\right) \Rightarrow$
$x-x_{0}=-\frac{v_{0}^{2}}{2 a}=-\frac{\left(13.1 \mathrm{~ms}^{-1}\right)^{2}}{2\left(-0.98 \mathrm{~ms}^{-2}\right)}=$

