First Name:	Last Name:	Section:		= 1
September 29, 2004			Physics 201	

EXAM 1

Print your name and section <u>clearly</u> on all <u>five</u> pages. (If you do not know your section number, write your TA's name.) Show all work in the space immediately below each problem. Your final answer must be placed in the box provided. Problems will be graded on reasoning and intermediate steps as well as on the final answer. Be sure to include units wherever necessary, and the direction of vectors. **Each problem is worth 25 points.** In doing the problems, try to be neat. Check your answers to see that they have the correct dimensions (units) and are the right order of magnitudes. You are allowed one 5" x 8" note card and no other references. The exam lasts exactly one hour.

(Do not write below)		
SCORE:		
Problem 1:		
Problem 2:		
Problem 3:		
Problem 4:		
TOTAL:		

Possibly useful information:

Acceleration due to gravity at the earth's surface: $g = 9.80 \text{ m/s}^2$

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

First Name: PROBLEM	Last Name:	Se	ction: = 2
PROBLEM A person of height 1.4 m pulls of fixed length that rises to a fri angle of Θ from vertical and the mass M=5.55 kg that is in a h pulley is 3.20 m above the height is holding the rope. At time t=	on a massless rope of ctionless pulley at an en drops vertically to a tole, as shown. The ht at which the person	Θ Θ	3.20 m
below the surface and the angle a. a. What is D, the horizontal d person and the vertical part of the (5 pts.)	$\Theta=51.4^{\circ}$. istance between the		surface
b. The person now walks away tension in the rope just after the			v=2.3 m/s. Find the
		Γ	
c. The person stops walking wh the distance from the mass to the			izontal component of
d. After stopping, the person let the hole. How long does it take			
e. After stopping, the person let the hole. What is the speed at v			own to the bottom of

	_
Section:	■ 4

First	Name:	 Last	Name

PROBLEM 3

A cart of mass M=2.5 kg with frictionless wheels has a frictionless pulley mounted on it, as shown. There are two blocks with masses m_1 =0.53 kg and m_2 = 1.44 kg connected by a rope, as shown. The coefficient of friction of block m_1 with the cart is μ_1 =0.33, while the coefficient of friction of block m_2 with the cart is zero. In parts d and e, a horizontal force F is applied to the cart.

a. Find the magnitude and direction (left or right) of the friction force on block m_1 when the cart is stationary. (5 pts.)

b. What is the tension in the string when the cart is stationary (F=0)? (5 pts.)

c. What is the acceleration of block m_1 when F=0? (5 pts.)

d. What is the vertical component of the acceleration of m_2 when the acceleration of the cart is 6.2 m/s²? (5 pts.)

e. Now suppose the coefficient of friction μ =0, and a force F is applied as shown that causes the cart to accelerate at 1.83 m/s². What is the vertical component of the acceleration of m₂? (5 pts.)

Fire	st Name:		Section: 5
PROBLEM 4 To prepare with his battle with Goliath, David is preparing a sling shot. He finds that the fastest that he can revolve a particular stone in a circular horizontal orbit of radius 1.34 m is 5.33 revolutions per second. Assume that the speed along the orbit is uniform.			
a.	What is the speed of the stone in	this circular orbit? (5 pts.)	
b.	Find the magnitude of the accele	eration of the stone in the circular orbit.	. (5 pts.)
c.	the ground. Find the time elapse	s out of the sling moving horizontally ved between when the stone comes out out in the stance can be neg	of the sling and when the
d.	Find the speed at which the ston	e in part c hits the ground. (5 pts.)	
e. poi	Find the horizontal distance betont where it hits the ground. (5 p	tween the point where the stone come ts.)	s out of the sling and the