\qquad
\qquad
\qquad

FINAL EXAM

Print your name and section clearly on all nine pages. (If you do not know your section number, write your TA's name.) Show all work in the space immediately below each problem. Your final answer must be placed in the box provided. Problems will be graded on reasoning and intermediate steps as well as on the final answer. Be sure to include units wherever necessary, and the direction of vectors. Each problem is worth 25 points. In doing the problems, try to be neat. Check your answers to see that they have the correct dimensions (units) and are the right order of magnitudes. You are allowed one $8.5 " \times 11 "$ sheet and no other references. The exam lasts exactly two hours.
(Do not write below)

SCORE:

Problem 1: \qquad
Problem 2: \qquad
Problem 3: \qquad
Problem 4: \qquad
Problem 5: \qquad
Problem 6: \qquad
Problem 7: \qquad
Problem 8: \qquad

TOTAL:

\qquad

Possibly useful information:
Acceleration due to gravity at the earth's surface: $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$
Gravitational Constant: $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
1 calorie $=4.186$ Joules, $\quad 1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}, \quad 0{ }^{\circ} \mathrm{C}=273.1^{\circ} \mathrm{K}$
Universal Gas Constant: $\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
Stefan-Boltzmann Constant: $\sigma=5.669 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
Avogadro's Number: $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$ molecules $/ \mathrm{mole}$
Boltzmann's Constant: $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Mass of earth $=597.42 \times 10^{22} \mathrm{~kg}$, radius of earth $=6.378 \times 10^{6} \mathrm{~m}$

First Name: \qquad Last Name: Section: \qquad
PROBLEM 1
A golfer is able to drive golf balls of mass 45 g a maximum range of 160 m . The golf ball stays in contact with the golf club while it travels 2.0 cm under constant acceleration. Ignore air resistance.
a. What is the magnitude of the golf ball's velocity just as its contact with the club ends? (5 pts.)
b. What is the average force on the golf ball during contact? (5 pts.)
c. What is the average power applied to the golf ball during contact? (5 pts.)
d. The velocity of the club head was $32 \mathrm{~m} / \mathrm{s}$ before contact with the golf ball and $23 \mathrm{~m} / \mathrm{s}$ after. What is the effective mass of the club head? (5 pts.)
e. How much kinetic energy is lost in the collision between the golf ball and the club head? (5 pts.)

First Name: \qquad Last Name: \qquad Section: \qquad
PROBLEM 2
A flywheel with mass of 8.0 kg , a moment of inertia of $50.0 \mathrm{kgm}^{2}$ and a diameter of 1.8 m is rotating at $12 \mathrm{rev} / \mathrm{s}$. It is stopped by two brake shoes that press against its edge with a force of 250 N each and a coefficient of friction of 0.60 .
a. What is the centripetal acceleration of a point on the outside rim of the wheel before the brakes are applied? (4 pts.)
b. What is the angular momentum of the flywheel before the brakes are applied? (4 pts.)
c. What is the torque applied by the brake shoes on the flywheel? (4 pts.)
\square
d. What is the angular acceleration of the flywheel when the brakes are applied? (4 pts.)
\square
e. How long does it take for the brakes to stop the flywheel? (4 pts.)

f. How much energy is dissipated in bringing the flywheel to rest? (5 pts.)

First Name: \qquad Last Name: \qquad
Air (a diatomic ideal gas) at $21.0^{\circ} \mathrm{C}$ and atmospheric pressure is drawn into a bicycle pump that has a cylinder with inner diameter of 2.70 cm and length 52.0 cm . The compression stroke adiabatically compresses the air, which reaches a gauge pressure of 708 kPa before entering the tire. The pump cylinder is thermally isolated from the outside but is in thermal contact with the inside air.
a. Determine the volume of the compressed air in the pump just before it enters the tire. (5 pts.)
b. Determine the temperature of the compressed air in the pump just before it enters the tire. (5 pts.)

c. The pump is made of steel (density $7850 \mathrm{~kg} / \mathrm{m}^{3}$, specific heat $\mathrm{C}=0.456 \mathrm{~kJ} / \mathrm{kgK}$) and has an inner wall that is 2.00 mm thick. The pump is thermally isolated from the outside air, but is in thermal contact with the air inside it. Assume that 11.8 cm of the cylinder's length is allowed to come to thermal equilibrium with the air in the pump after completion of the compression stroke. What will be the increase in wall temperature? (5 pts .)

d. After many pump cycles, the tire is filled to a volume of $0.0135 \mathrm{~m}^{3}$ and a gauge pressure of 708 kPa at $21.0^{\circ} \mathrm{C}$ and sealed. How many moles of gas are on the tire? (5 pts.)

e. After a high speed ride, the tire air temperature rises to $32.7^{\circ} \mathrm{C}$ and the interior volume of the tire increases by 1.55%. What is the gauge air pressure in the tire now? (5 pts.)

First Name: \qquad Last Name: \qquad Section: \qquad
PROBLEM 4
A container of volume $1.37 \mathrm{~m}^{3}$ contains one mole of a mixture of 0.500 mole argon (Ar) gas and 0.500 mole nitrogen $\left(\mathrm{N}_{2}\right)$ gas in thermal equilibrium at $153{ }^{\circ} \mathrm{C}$. (Mass of argon atom $=6.6335 \times 10^{-26}$ kg , mass of helium atom $=6.647 \times 10^{-27} \mathrm{~kg}$)
a. What is the total translational kinetic energy, in Joules, of the mixture? (5 pts.)
b. What is the root-mean-square speed for an argon atom? (5 pts.)

c. What is the molar specific heat at constant volume of this gas mixture? (5 pts.)

d. What is the molar specific heat at constant pressure of this gas mixture? (5 pts.)
e. The gas mixture expands adiabatically to a volume of $1.95 \mathrm{~m}^{3}$. What is the pressure? (5 pts.)

First Name: \qquad Last Name: \qquad Section: \qquad

PROBLEM 5

A cylindrical steel rod (density $7850 \mathrm{~kg} / \mathrm{m}^{3}$, thermal expansion coefficient $13.0 \times 10^{-6} / \mathrm{K}$, thermal conductivity $5.40 \times 10^{4} \mathrm{~W} / \mathrm{K}$, Young's modulus $2.00 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$) and a cylindrical copper rod (density $8930 \mathrm{~kg} / \mathrm{m}^{3}$, thermal expansion coefficient $17.0 \times 10^{-6} / \mathrm{K}$, thermal conductivity $4.01 \times 10^{5} \mathrm{~W} / \mathrm{K}$, Young's modulus $1.10 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$), each of diameter 2.050 cm , are joined end to end and placed on an insulating block. At $22.5^{\circ} \mathrm{C}$, the steel part of the rod has a length of 0.778 m , the left edge of the block is under the joint, and block is positioned so that the rod just stays on it without tipping off.
a. How long is the copper part of the rod? (5 pts.)
\square
b. By how much does the length of the entire (compound) rod increase when the temperature is raised to $37.3^{\circ} \mathrm{C}$? (5 pts.)
c. Equal and opposite large inward forces of 189 N are applied to each end of the rod at $37.3^{\circ} \mathrm{C}$. What is the fractional change in the length of the compound rod induced by the stress?

For parts d and e , the rod is moved away to another place where it is wedged between two vertical walls. The left wall is maintained at $40.3^{\circ} \mathrm{C}$ and the right wall at $22.5^{\circ} \mathrm{C}$, the steel part of the rod has a length of 0.778 m and the copper part of the rod has a length of 0.722 m . To a good approximation, all the heat flow between the walls occurs through the rod.
d. What is temperature at the joint? (5 pts.)
e. What is rate at which heat flows down the rod? (5 pts.)
\qquad
\qquad Section: \qquad

b. How many Joules of heat are ejected into the surroundings on the leg BC? (5 pts.)
c. How many Joules of heat are added to the gas along the leg CA? (5 pts.)

d. What is the change in entropy along the leg CA? (5 pts.)

e. What is the efficiency ε of this engine? (5 pts.)

First Name: \qquad Last Name: \qquad PROBLEM 7
A large circular tank with a diameter of 12.2 m and an open top contains water. The water can drain from the tank through a hose of diameter 6.80 cm . The hose ends with a nozzle of diameter 2.20 cm . A rubber stopper is inserted into the nozzle. The water level in the tank is kept 8.16 m above the nozzle.
a. Calculate the magnitude of the friction force exerted by the nozzle
 on the stopper. (5 pts .)

b. The stopper is removed. What mass of water flows from the nozzle in 0.21 s ? (5 pts.)
\square
c. The tank is placed on a rocket ship. Just after blastoff the rocket is at the earth's surface accelerating at $125 \mathrm{~m} / \mathrm{s}^{2}$. The water level in the tank is still kept constant at 8.16 m above the nozzle. What mass of water now flows from the nozzle in 0.21 s ? (5 pts .)
\square
d. After the rocket has finished burning, the satellite is in a circular orbit around the earth with a period of two days. How far is the satellite from the earth's surface? (5 pts.)
\square
e. What is the magnitude of the acceleration of the satellite in the orbit in part d ? (5 pts.)

First Name: \qquad
\qquad Section: \qquad
A bead slides without friction around a vertical loop-the-loop (see figure). The bead is released from a height $h=3.31 R$. The loop-the-loop radius is $\mathrm{R}=1.73 \mathrm{~m}$.
a. What is the bead's speed at point A? (5 pts.)

b. What is the magnitude of the normal force on the bead at point A if its mass is 4.00 g ? (5 pts.)

c. At point B, what is the direction of bead's acceleration (choose from up, down, right, left, up and right, up and left, down and right, and down and left)? (5 pts.)

d. Upon leaving the loop-the-loop, the particle collides with the ball of a pendulum with mass 4.00 g hanging by a massless rod of length $\mathrm{L}=10.3 \mathrm{~m}$. How long after this collision does the pendulum ball first reach its maximum height? (5 pts.)
e. What is the maximum height reached by the pendulum ball? (5 pts.)

