P14.27
(a) $\quad P=P_{0}+\rho g h$

Taking $P_{0}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and $h=5.00 \mathrm{~cm}$
we find
$P_{\text {top }}=1.0179 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
For $h=17.0 \mathrm{~cm}$, we get
$P_{\text {bot }}=1.0297 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Since the areas of the top and bottom are
$A=(0.100 \mathrm{~m})^{2}=10^{-2} \mathrm{~m}^{2}$
we find
$F_{\text {top }}=P_{\text {top }} A=1.0179 \times 10^{3} \mathrm{~N}$
and
$F_{\text {bot }}=1.0297 \times 10^{3} \mathrm{~N}$

(b) $\quad T+B-M g=0$
where $\quad B=\rho_{w} V g=\left(10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1.20 \times 10^{-3} \mathrm{~m}^{3}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=11.8 \mathrm{~N}$
and $\quad M g=10.0(9.80)=98.0 \mathrm{~N}$
Therefore, $\quad T=M g-B=98.0-11.8=86.2 \mathrm{~N}$
Continued on next page
(c) $\quad F_{\text {bot }}-F_{\text {top }}=(1.0297-1.0179) \times 10^{3} \mathrm{~N}=11.8 \mathrm{~N}$
which is equal to B found in part (b).
P14.28 Consider spherical balloons of radius 12.5 cm containing helium at STP and immersed in air at $0^{\circ} \mathrm{C}$ and 1 atm . If the rubber envelope has mass 5.00 g , the upward force on each is

$$
\begin{aligned}
& B-F_{g, \mathrm{He}}-F_{g, \text { env }}=\rho_{\text {air }} V g-\rho_{\mathrm{He}} V g-m_{\text {env }} g \\
& F_{u p}=\left(\rho_{\text {air }}-\rho_{\mathrm{He}}\right)\left(\frac{4}{3} \pi r^{3}\right) g-m_{\text {env }} g \\
& F_{u p}=\left[(1.29-0.179) \mathrm{kg} / \mathrm{m}^{3}\right]\left[\frac{4}{3} \pi(0.125 \mathrm{~m})^{3}\right]\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)-5.00 \times 10^{-3} \mathrm{~kg}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=0.0401 \mathrm{~N}
\end{aligned}
$$

If your weight (including harness, strings, and submarine sandwich) is

$$
\begin{aligned}
& 70.0 \mathrm{~kg}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=686 \mathrm{~N} \\
& \text { you need this many balloons: } \frac{686 \mathrm{~N}}{0.0401 \mathrm{~N}}=17000 \sim \sim 10^{4} .
\end{aligned}
$$

P14.45 (a) Suppose the flow is very slow:

$$
\left(P+\frac{1}{2} \rho v^{2}+\rho g y\right)_{\text {river }}=\left(P+\frac{1}{2} \rho v^{2}+\rho g y\right)_{\text {rim }}
$$

$$
\begin{aligned}
& P+0+\rho g(564 \mathrm{~m})=1 \mathrm{~atm}+0+\rho g(2096 \mathrm{~m}) \\
& P=1 \mathrm{~atm}+\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1532 \mathrm{~m})=1 \mathrm{~atm}+15.0 \mathrm{MPa}
\end{aligned}
$$

(b) The volume flow rate is

$$
4500 \mathrm{~m}^{3} / \mathrm{d}=A v=\frac{\pi d^{2} v}{4}
$$

$$
v=\left(4500 \mathrm{~m}^{3} / \mathrm{d}\right)\left(\frac{1 \mathrm{~d}}{86400 \mathrm{~s}}\right)\left(\frac{4}{\pi(0.150 \mathrm{~m})^{2}}\right)=2.95 \mathrm{~m} / \mathrm{s}
$$

(c) Imagine the pressure as applied to stationary water at the bottom of the pipe:

$$
\begin{aligned}
& \left(P+\frac{1}{2} \rho v^{2}+\rho g y\right)_{\text {bottom }}=\left(P+\frac{1}{2} \rho v^{2}+\rho g y\right)_{\text {top }} \\
& P+0=1 \mathrm{~atm}+\frac{1}{2}\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(2.95 \mathrm{~m} / \mathrm{s})^{2}+1000 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1532 \mathrm{~m}) \\
& P=1 \mathrm{~atm}+15.0 \mathrm{MPa}+4.34 \mathrm{kPa}
\end{aligned}
$$

The additional pressure is 4.34 kPa .
P14.48

$$
\begin{aligned}
& M g=\left(P_{1}-P_{2}\right) A \quad \text { for a balanced condition } \\
& \frac{16000(9.80)}{A}=7.00 \times 10^{4}-P_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \quad A=80.0 \mathrm{~m}^{2} \\
& \therefore P_{2}=7.0 \times 10^{4}-0.196 \times 10^{4}=6.80 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

P14.49 $\quad \rho_{\text {air }} \frac{v^{2}}{2}=\Delta P=\rho_{\mathrm{Hg}} g \Delta h$
$v=\sqrt{\frac{2 \rho_{\mathrm{Hg}} g \Delta h}{\rho_{\text {air }}}}=103 \mathrm{~m} / \mathrm{s}$

FIG. P14.49

