## Chapter Nineteen: Temperature

## SOLUTIONS TO PROBLEMS

P19.15 (a) $L_{\text {Al }}\left(1+\alpha_{\mathrm{Al}} \Delta T\right)=L_{\text {Brass }}\left(1+\alpha_{\text {Brass }} \Delta T\right)$
$\Delta T=\frac{L_{\mathrm{Al}}-L_{\text {Brass }}}{L_{\text {Brass }} \alpha_{\text {Brass }}-L_{\mathrm{Al}} \alpha_{\mathrm{Al}}}$
$\Delta T=\frac{(10.01-10.00)}{(10.00)\left(19.0 \times 10^{-6}\right)-(10.01)\left(24.0 \times 10^{-6}\right)}$
$\Delta T=-199^{\circ} \mathrm{C}$ so $T=-179^{\circ} \mathrm{C}$. This is attainable.
(b) $\quad \Delta T=\frac{(10.02-10.00)}{(10.00)\left(19.0 \times 10^{-6}\right)-(10.02)\left(24.0 \times 10^{-6}\right)}$
$\Delta T=-396^{\circ} \mathrm{C}$ so $T=-376^{\circ} \mathrm{C}$ which is below 0 K so it cannot be reached.
(a) $\quad L=L_{i}(1+\alpha \Delta T): 5.050 \mathrm{~cm}=5.000 \mathrm{~cm}\left[1+24.0 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\left(T-20.0^{\circ} \mathrm{C}\right)\right]$

$$
T=437^{\circ} \mathrm{C}
$$

(b) We must get $\quad L_{\mathrm{Al}}=L_{\text {Brass }}$ for some $\Delta T$, or
$L_{i, \mathrm{Al}}\left(1+\alpha_{\mathrm{Al}} \Delta T\right)=L_{i, \text { Brass }}\left(1+\alpha_{\text {Brass }} \Delta T\right)$
$5.000 \mathrm{~cm}\left[1+\left(24.0 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right) \Delta T\right]=5.050 \mathrm{~cm}\left[1+\left(19.0 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right) \Delta T\right]$
Solving for $\Delta T, \quad \Delta T=2080^{\circ} \mathrm{C}$,
so

$$
T=3000^{\circ} \mathrm{C}
$$

This will not work because aluminum melts at $660^{\circ} \mathrm{C}$
(a) $\quad V_{f}=V_{i}(1+\beta \Delta T)=100\left[1+1.50 \times 10^{-4}(-15.0)\right]=99.8 \mathrm{~mL}$
(b) $\quad \Delta V_{\text {acetone }}=\left(\beta V_{i} \Delta T\right)_{\text {acetone }}$

$$
\Delta V_{\text {flask }}=\left(\beta V_{i} \Delta T\right)_{\text {Pyrex }}=\left(3 \alpha V_{i} \Delta T\right)_{\text {Pyrex }}
$$

for same $V_{i}, \Delta T$,

$$
\frac{\Delta V_{\text {acetone }}}{\Delta V_{\text {flask }}}=\frac{\beta_{\text {acetone }}}{\beta_{\text {flask }}}=\frac{1.50 \times 10^{-4}}{3\left(3.20 \times 10^{-6}\right)}=\frac{1}{6.40 \times 10^{-2}}
$$

The volume change of flask is
about $6 \%$ of the change in the acetone's volume.

P19.20 (a),(b) The material would expand by $\Delta L=\alpha L_{i} \Delta T$,

$$
\begin{aligned}
\frac{\Delta L}{L_{i}} & =\alpha \Delta T, \text { but instead feels stress } \\
\frac{F}{A} & =\frac{Y \Delta L}{L_{i}}=Y \alpha \Delta T=\left(7.00 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right) 12.0 \times 10^{-6}\left(\mathrm{C}^{\circ}\right)^{-1}\left(30.0^{\circ} \mathrm{C}\right) \\
& =2.52 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} . \text { This will } \text { not break concrete } .
\end{aligned}
$$

P19.28 $P V=N P^{\prime} V^{\prime}=\frac{4}{3} \pi r^{3} N P^{\prime}: \quad N=\frac{3 P V}{4 \pi r^{3} P^{\prime}}=\frac{3(150)(0.100)}{4 \pi(0.150)^{3}(1.20)}=884$ balloons
If we have no special means for squeezing the last 100 L of helium out of the tank, the tank will be full of helium at 1.20 atm when the last balloon is inflated. The number of balloons is then reduced to to $884-\frac{\left(0.100 \mathrm{~m}^{3}\right) 3}{4 \pi(0.15 \mathrm{~m})^{3}}=877$.

