SOLUTIONS TO PROBLEMS

P21.15 $n=1.00 \mathrm{~mol}, T_{i}=300 \mathrm{~K}$
(b) Since $V=$ constant, $W=0$
(a) $\Delta E_{\text {int }}=Q+W=209 \mathrm{~J}+0=209 \mathrm{~J}$
(c) $\quad \Delta E_{\mathrm{int}}=n C_{V} \Delta T=n\left(\frac{3}{2} R\right) \Delta T$
so

$$
\Delta T=\frac{2 \Delta E_{\mathrm{int}}}{3 n R}=\frac{2(209 \mathrm{~J})}{3(1.00 \mathrm{~mol})(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})}=16.8 \mathrm{~K}
$$

$$
T=T_{i}+\Delta T=300 \mathrm{~K}+16.8 \mathrm{~K}=317 \mathrm{~K}
$$

P21.24
(a) $\quad P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma} \quad$ so $\quad \frac{V_{f}}{V_{i}}=\left(\frac{P_{i}}{P_{f}}\right)^{1 / \gamma}=\left(\frac{1.00}{20.0}\right)^{5 / 7}=0.118$
(b) $\frac{T_{f}}{T_{i}}=\frac{P_{f} V_{f}}{P_{i} V_{i}}=\left(\frac{P_{f}}{P_{i}}\right)\left(\frac{V_{f}}{V_{i}}\right)=(20.0)(0.118) \quad \frac{T_{f}}{T_{i}}=2.35$
(c) Since the process is adiabatic,

$$
Q=0
$$

Since $\gamma=1.40=\frac{C_{P}}{C_{V}}=\frac{R+C_{V}}{C_{V}}, \quad C_{V}=\frac{5}{2} R$ and $\Delta T=2.35 T_{i}-T_{i}=1.35 T_{i}$

$$
\Delta E_{\mathrm{int}}=n C_{V} \Delta T=(0.0160 \mathrm{~mol})\left(\frac{5}{2}\right)(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})[1.35(300 \mathrm{~K})]=135 \mathrm{~J}
$$

and

$$
W=-Q+\Delta E_{\mathrm{int}}=0+135 \mathrm{~J}=+135 \mathrm{~J} .
$$

P21.35 Rotational Kinetic Energy $=\frac{1}{2} I \omega^{2}$

$$
\begin{aligned}
& I=2 m r^{2}, m=35.0 \times 1.67 \times 10^{-27} \mathrm{~kg}, r=10^{-10} \mathrm{~m} \\
& I=1.17 \times 10^{-45} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
& \therefore K_{\text {rot }}=\frac{1}{2} I \omega^{2}=2.33 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

P21.41 (a) From $v_{\text {av }}=\sqrt{\frac{8 k_{B} T}{\pi m}}$

$$
\text { we find the temperature as } T=\frac{\pi\left(6.64 \times 10^{-27} \mathrm{~kg}\right)\left(1.12 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)^{2}}{8\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}\right)}=2.37 \times 10^{4} \mathrm{~K}
$$

(b) $T=\frac{\pi\left(6.64 \times 10^{-27} \mathrm{~kg}\right)\left(2.37 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2}}{8\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}\right)}=1.06 \times 10^{3} \mathrm{~K}$

P21.47 From Equation 21.30, $\mathrm{I}=\frac{1}{\sqrt{2} \pi d^{2} n_{V}}$
For an ideal gas, $n_{V}=\frac{N}{V}=\frac{P}{k_{B} T}$
Therefore, $I=\frac{k_{B} T}{\sqrt{2} \pi d^{2} P}$, as required.
Chapter Twenty-Two: Heat Engines, Entropy, and the Second Law of Thermodynamics

SOLUTIONS TO PROBLEMS

P22.17
(a) In an adiabatic process, $P_{f} V_{f}^{\gamma}=P_{i} V_{i}^{\gamma}$. Also, $\left(\frac{P_{f} V_{f}}{T_{f}}\right)^{\gamma}=\left(\frac{P_{i} V_{i}}{T_{i}}\right)^{\gamma}$.

Dividing the second equation by the first yields $T_{f}=T_{i}\left(\frac{P_{f}}{P_{i}}\right)^{(\gamma-1) / \gamma}$.
Since $\gamma=\frac{5}{3}$ for Argon, $\frac{\gamma-1}{\gamma}=\frac{2}{5}=0.400$ and we have

$$
T_{f}=(1073 \mathrm{~K})\left(\frac{300 \times 10^{3} \mathrm{~Pa}}{1.50 \times 10^{6} \mathrm{~Pa}}\right)^{0.400}=564 \mathrm{~K}
$$

(b) $\Delta E_{\mathrm{int}}=n C_{V} \Delta T=Q-W_{\mathrm{eng}}=0-W_{\mathrm{eng}}$, so $W_{\mathrm{eng}}=-n C_{V} \Delta T$,
and the power output is

$$
\begin{aligned}
\mathrm{P} & =\frac{W_{\text {eng }}}{t}=\frac{-n C_{V} \Delta T}{t} \text { or } \\
& =\frac{(-80.0 \mathrm{~kg})\left(\frac{1.00 \mathrm{~mol}}{0.0399 \mathrm{~kg}}\right)\left(\frac{3}{2}\right)(8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(564-1073) \mathrm{K}}{60.0 \mathrm{~s}} \\
\mathrm{P} & =2.12 \times 10^{5} \mathrm{~W}=212 \mathrm{~kW}
\end{aligned}
$$

(c) $e_{C}=1-\frac{T_{c}}{T_{h}}=1-\frac{564 \mathrm{~K}}{1073 \mathrm{~K}}=0.475$ or 47.5%

P22.26 COP $=0.100 \mathrm{COP}_{\text {Carnot cycle }}$
or

$$
\begin{aligned}
& \frac{Q_{h} \mid}{W}=0.100\left(\frac{Q_{h} \mid}{W}\right)_{\text {Carnot cycle }}=0.100\left(\frac{1}{\text { Carnot efficiency }}\right) \\
& \frac{Q_{h} \mid}{W}=0.100\left(\frac{T_{h}}{T_{h}-T_{c}}\right)=0.100\left(\frac{293 \mathrm{~K}}{293 \mathrm{~K}-268 \mathrm{~K}}\right)=1.17
\end{aligned}
$$

FIG. P22.26

Thus, 1.17 joules of energy enter the room by heat for each joule of work done.
P22.32 Compression ratio $=6.00, \gamma=1.40$
(a) Efficiency of an Otto-engine $e=1-\left(\frac{V_{2}}{V_{1}}\right)^{\gamma-1}$

$$
e=1-\left(\frac{1}{6.00}\right)^{0.400}=51.2 \%
$$

(b) If actual efficiency $e^{\prime}=15.0 \%$ losses in system are $e-e^{\prime}=36.2 \%$.

P22.58
(a) $\frac{W_{\text {eng }}}{t}=1.50 \times 10^{8} \mathrm{~W}_{\text {(electrical) }}, Q=m L=\left[\frac{\frac{W_{\text {eng }}}{t}}{0.150}\right] \Delta t$,
and $L=33.0 \mathrm{~kJ} / \mathrm{g}=33.0 \times 10^{6} \mathrm{~J} / \mathrm{kg}$

$$
\begin{aligned}
& m=\left[\frac{W_{\mathrm{eng}} / t}{0.150}\right] \frac{\Delta t}{L} \\
& m=\frac{\left(1.50 \times 10^{8} \mathrm{~W}\right)(86400 \mathrm{~s} / \text { day })}{0.150\left(33.0 \times 10^{6} \mathrm{~J} / \mathrm{kg}\right)\left(10^{3} \mathrm{~kg} / \text { metric ton }\right)}=2620 \text { metric tons/day }
\end{aligned}
$$

(b) Cost $=(\$ 8.00 /$ metric ton $)(2618$ metric tons/day $)(365$ days $/ \mathrm{yr})$

Cost $=\$ 7.65$ million $/$ year
(c) First find the rate at which heat energy is discharged into the water. If the plant is 15.0% efficient in producing electrical energy then the rate of heat production is

$$
\frac{Q_{c} \mid}{t}=\left(\frac{W_{\mathrm{eng}}}{t}\right)\left(\frac{1}{e}-1\right)=\left(1.50 \times 10^{8} \mathrm{~W}\right)\left(\frac{1}{0.150}-1\right)=8.50 \times 10^{8} \mathrm{~W}
$$

Then, $\frac{\left|Q_{c}\right|}{t}=\frac{m c \Delta T}{t}$ and

