Chapter Two: Motion in One Dimension

SOLUTIONS TO PROBLEMS

P2.4 $x=10 t^{2}$: For $\begin{gathered}t(\mathrm{~s}) \\ x(\mathrm{~m})\end{gathered}=\begin{array}{cccc} & = & 40 & 44.1 \\ x & 2.1 & 3.0 \\ \end{array}$
(a) $\bar{v}=\frac{\Delta x}{\Delta t}=\frac{50 \mathrm{~m}}{1.0 \mathrm{~s}}=50.0 \mathrm{~m} / \mathrm{s}$
(b) $\bar{v}=\frac{\Delta x}{\Delta t}=\frac{4.1 \mathrm{~m}}{0.1 \mathrm{~s}}=41.0 \mathrm{~m} / \mathrm{s}$
*P2.13
(a) The average speed during a time interval Δt is $\bar{v}=\frac{\text { distance traveled }}{\Delta t}$. During the first quarter mile segment, Secretariat's average speed was

$$
\bar{v}_{1}=\frac{0.250 \mathrm{mi}}{25.2 \mathrm{~s}}=\frac{1320 \mathrm{ft}}{25.2 \mathrm{~s}}=52.4 \mathrm{ft} / \mathrm{s} .(35.6 \mathrm{mi} / \mathrm{h})
$$

During the second quarter mile segment,

$$
\bar{v}_{2}=\frac{1320 \mathrm{ft}}{24.0 \mathrm{~s}}=55.0 \mathrm{ft} / \mathrm{s} \quad(37.4 \mathrm{mi} / \mathrm{h})
$$

For the third quarter mile of the race,

$$
\bar{v}_{3}=\frac{1320 \mathrm{ft}}{23.8 \mathrm{~s}}=55.5 \mathrm{ft} / \mathrm{s} \quad(37.7 \mathrm{mi} / \mathrm{h})
$$

and during the final quarter mile,

$$
\bar{v}_{4}=\frac{1320 \mathrm{ft}}{23.0 \mathrm{~s}}=57.4 \mathrm{ft} / \mathrm{s} \quad(39.0 \mathrm{mi} / \mathrm{h})
$$

(b) Assuming that $v_{f}=\bar{v}_{4}$ and recognizing that $v_{i}=0$, the average acceleration during the race was

$$
\bar{a}=\frac{v_{f}-v_{i}}{\text { total elapsed time }}=\frac{57.4 \mathrm{ft} / \mathrm{s}-0}{(25.2+24.0+23.8+23.0) \mathrm{s}}=0.598 \mathrm{ft} / \mathrm{s}^{2} .
$$

P2.25 (a) Compare the position equation $x=2.00+3.00 t-4.00 t^{2}$ to the general form

$$
x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2}
$$

to recognize that $x_{i}=2.00 \mathrm{~m}, v_{i}=3.00 \mathrm{~m} / \mathrm{s}$, and $a=-8.00 \mathrm{~m} / \mathrm{s}^{2}$. The velocity equation, $v_{f}=v_{i}+a t$, is then

$$
v_{f}=3.00 \mathrm{~m} / \mathrm{s}-\left(8.00 \mathrm{~m} / \mathrm{s}^{2}\right) t
$$

The particle changes direction when $v_{f}=0$, which occurs at $t=\frac{3}{8} \mathrm{~s}$. The position at this time is:

$$
x=2.00 \mathrm{~m}+(3.00 \mathrm{~m} / \mathrm{s})\left(\frac{3}{8} \mathrm{~s}\right)-\left(4.00 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\frac{3}{8} \mathrm{~s}\right)^{2}=2.56 \mathrm{~m}
$$

(b) From $x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2}$, observe that when $x_{f}=x_{i}$, the time is given by $t=-\frac{2 v_{i}}{a}$. Thus, when the particle returns to its initial position, the time is

$$
\begin{aligned}
& \qquad t=\frac{-2(3.00 \mathrm{~m} / \mathrm{s})}{-8.00 \mathrm{~m} / \mathrm{s}^{2}}=\frac{3}{4} \mathrm{~s} \\
& \text { and the velocity is } v_{f}=3.00 \mathrm{~m} / \mathrm{s}-\left(8.00 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\frac{3}{4} \mathrm{~s}\right)=-3.00 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

*P2.26
The time for the Ford to slow down we find from

$$
\begin{aligned}
x_{f} & =x_{i}+\frac{1}{2}\left(v_{x i}+v_{x f}\right) t \\
t & =\frac{2 \Delta x}{v_{x i}+v_{x f}}=\frac{2(250 \mathrm{~m})}{71.5 \mathrm{~m} / \mathrm{s}+0}=6.99 \mathrm{~s} .
\end{aligned}
$$

Its time to speed up is similarly

$$
t=\frac{2(350 \mathrm{~m})}{0+71.5 \mathrm{~m} / \mathrm{s}}=9.79 \mathrm{~s}
$$

The whole time it is moving at less than maximum speed is $6.99 \mathrm{~s}+5.00 \mathrm{~s}+9.79 \mathrm{~s}=21.8 \mathrm{~s}$. The Mercedes travels

$$
\begin{aligned}
x_{f} & =x_{i}+\frac{1}{2}\left(v_{x i}+v_{x f}\right) t=0+\frac{1}{2}(71.5+71.5)(\mathrm{m} / \mathrm{s})(21.8 \mathrm{~s}) \\
& =1558 \mathrm{~m}
\end{aligned}
$$

while the Ford travels $250+350 \mathrm{~m}=600 \mathrm{~m}$, to fall behind by $1558 \mathrm{~m}-600 \mathrm{~m}=958 \mathrm{~m}$.
P2.42 We have $y_{f}=-\frac{1}{2} g t^{2}+v_{i} t+y_{i}$

$$
0=-\left(4.90 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}-(8.00 \mathrm{~m} / \mathrm{s}) t+30.0 \mathrm{~m}
$$

Solving for t,

$$
t=\frac{8.00 \pm \sqrt{64.0+588}}{-9.80}
$$

Using only the positive value for t, we find that $t=1.79 \mathrm{~s}$.

Chapter Three: Vectors

SOLUTIONS TO PROBLEMS

P3.9
$-\mathbf{R}=310 \mathrm{~km}$ at $57^{\circ} \mathrm{S}$ of W
(Scale: 1 unit $=20 \mathrm{~km}$)

FIG. P3.9

Your sketch should be drawn to scale, and should look somewhat like that pictured to the right. The angle from the westward direction, θ, can be measured to be $4^{\circ} \mathrm{N}$ of W , and the distance R from the sketch can be converted according to the scale to be 7.9 m .

FIG. P3.14
(a) $\mathbf{D}=\mathbf{A}+\mathbf{B}+\mathbf{C}=2 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}$

$$
\mathbf{D} \mid=\sqrt{2^{2}+4^{2}}=4.47 \mathrm{~m} \text { at } \theta=63.4^{\circ}
$$

(b) $\quad \mathbf{E}=-\mathbf{A}-\mathbf{B}+\mathbf{C}=-6 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}$
$|\mathbf{E}|=\sqrt{6^{2}+6^{2}}=8.49 \mathrm{~m}$ at $\theta=135^{\circ}$
(a) $\quad \mathbf{F}=\mathrm{F}_{1}+\mathrm{F}_{2}$
$\mathbf{F}=120 \cos \left(60.0^{\circ}\right) \hat{\mathbf{i}}+120 \sin \left(60.0^{\circ}\right) \hat{\mathbf{j}}-80.0 \cos \left(75.0^{\circ}\right) \hat{\mathbf{i}}+80.0 \sin \left(75.0^{\circ}\right) \hat{\mathbf{j}}$
$\mathbf{F}=60.0 \hat{\mathbf{i}}+104 \hat{\mathbf{j}}-20.7 \hat{\mathbf{i}}+77.3 \hat{\mathbf{j}}=(39.3 \hat{\mathbf{i}}+181 \hat{\mathbf{j}}) \mathrm{N}$

$$
|\mathbf{F}|=\sqrt{39.3^{2}+181^{2}}=185 \mathrm{~N}
$$

$$
\theta=\tan ^{-1}\left(\frac{181}{39.3}\right)=77.8^{\circ}
$$

(b) $\quad \mathbf{F}_{3}=-\mathbf{F}=(-39.3 \hat{\mathbf{i}}-181 \hat{\mathbf{j}}) \mathrm{N}$

P3.53 (a) $R_{x}=2.00, R_{y}=1.00, R_{z}=3.00$
(b) $\quad|\boldsymbol{R}|=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}=\sqrt{4.00+1.00+9.00}=\sqrt{14.0}=3.74$
(c) $\cos \theta_{x}=\frac{R_{x}}{|\boldsymbol{R}|} \Rightarrow \theta_{x}=\cos ^{-1}\left(\frac{R_{x}}{|\mathbf{R}|}\right)=57.7^{\circ}$ from $+x$
$\cos \theta_{y}=\frac{R_{y}}{|\boldsymbol{R}|} \Rightarrow \theta_{y}=\cos ^{-1}\left(\frac{R_{y}}{|\boldsymbol{R}|}\right)=74.5^{\circ}$ from $+y$
$\cos \theta_{z}=\frac{R_{z}}{|\mathbf{R}|} \Rightarrow \theta_{z}=\cos ^{-1}\left(\frac{R_{z}}{|\mathbf{R}|}\right)=36.7^{\circ}$ from $+z$

