P5.34 (a) Pulley P₁ has acceleration a_2 . Since m_1 moves *twice* the distance P₁moves in the same time, m_1 has twice the acceleration of P₁, i.e., $a_1 = 2a_2$.

(b) From the figure, and using

$$\sum F = ma: \quad m_2g - T_2 = m_2a_2 \qquad (1)$$
$$T_1 = m_1a_1 = 2 m_1a_2 \qquad (2)$$
$$T_2 - 2 T_1 = 0 \qquad (3)$$

Equation (1) becomes $m_2 g - 2T_1 = m_2 a_2$. This equation combined with Equation (2) yields

$$\frac{T_1}{m_1} \left(2 m_1 + \frac{m_2}{2} \right) = m_2 g$$

$$T_1 = \frac{m_1 m_2}{2 m_1 + \frac{1}{2} m_2} g$$
and
$$T_2 = \frac{m_1 m_2}{m_1 + \frac{1}{4} m_2} g$$

(c) From the values of T_1 and T_2 we find that

$$a_1 = \frac{T_1}{m_1} = \boxed{\frac{m_2 g}{2 m_1 + \frac{1}{2} m_2}}$$
 and $a_2 = \frac{1}{2} a_1 = \boxed{\frac{m_2 g}{4 m_1 + m_2}}$

P5.37

 $\sum F_{y} = ma_{y}: +n - mg = 0$ $f_{s} \le \mu_{s}n = \mu_{s}mg$

This maximum magnitude of static friction acts so long as the tires roll without skidding.

$$\sum F_x = ma_x: -f_s = ma$$

The maximum acceleration is

 $a = -\mu_s g$.

The initial and final conditions are: $x_i = 0$, $v_i = 50.0$ mi/h = 22.4 m/s, $v_f = 0$

$$v_f^2 = v_i^2 + 2a(x_f - x_i): -v_i^2 = -2\mu_s g x_f$$

(a)
$$X_f = \frac{v_i^2}{2\mu g}$$

 $X_f = \frac{(22.4 \text{ m/s})^2}{2(0.100)(9.80 \text{ m/s}^2)} = 256 \text{ m}$

(b)
$$x_f = \frac{v_i^2}{2\mu g}$$

 $x_f = \frac{(22.4 \text{ m/s})^2}{2(0.600)(9.80 \text{ m/s}^2)} = 42.7 \text{ m}$

P5.44 Let *a* represent the positive magnitude of the acceleration $-a\hat{j}$ of m_1 , of the acceleration $-a\hat{i}$ of m_2 , and of the acceleration $+a\hat{j}$ of m_3 . Call T_{12} the tension in the left rope and T_{23} the tension in the cord on the right.

For m_1 , $\sum F_y = ma_y + T_{12} - m_1g = -m_1a$ For m_2 , $\sum F_x = ma_x - T_{12} + \mu_k n + T_{23} = -m_2a$

for m_3 , $\sum F_y = ma_y$ $T_{23} - m_3g = +m_3a$

we have three simultaneous equations

and

+39.2 N - 3.43 N - 19.6 N = (7.00 kg)a

 $\sum F_v = ma_v$ $n - m_2g = 0$

(a) Add them up:

FIG. P5.44

п

m₂ g

 T_{23}

m₃ g

 T_{12}

 T_{12}

$$a = \boxed{2.31 \text{ m/s}^2, \text{ down for } m_1, \text{ left for } m_2, \text{ and up for } m_3}.$$

(b) Now $-T_{12} + 39.2 \text{ N} = (4.00 \text{ kg})(2.31 \text{ m/s}^2)$
 $\boxed{T_{12} = 30.0 \text{ N}}$

and
$$T_{23} - 19.6 \text{ N} = (2.00 \text{ kg})(2.31 \text{ m/s}^2)$$

 $T_{23} = 24.2$ N

18

P5.54

$$N - P = (2 \text{ kg})a$$
$$P - Q = (3 \text{ kg})a$$
$$Q = (4 \text{ kg})a$$

 $18 \text{ N} \begin{array}{c} \mathbf{n}_{2} \\ 18 \text{ N} \\ 2 \text{ kg} \\ 19.6 \text{ N} \end{array} \begin{array}{c} \mathbf{p} \\ \mathbf{p} \\ 3 \text{ kg} \\ \mathbf{q} \\ 29.4 \text{ N} \end{array} \begin{array}{c} \mathbf{n}_{4} \\ \mathbf{q} \\ \mathbf{q} \\ 4 \text{ kg} \\ 39.2 \text{ N} \end{array}$

Adding gives 18 N = (9 kg)a so

 $a = 2.00 \text{ m/s}^2$

(b)
$$Q = 4 \text{ kg}(2 \text{ m/s}^2) = 8.00 \text{ N net force on the 4 kg}$$

 $P - 8 \text{ N} = 3 \text{ kg}(2 \text{ m/s}^2) = 6.00 \text{ N net force on the 3 kg} \text{ and } P = 14 \text{ N}$
 $18 \text{ N} - 14 \text{ N} = 2 \text{ kg}(2 \text{ m/s}^2) = 4.00 \text{ N net force on the 2 kg}$
(c) From above, $Q = 8.00 \text{ N}$ and $P = 14.0 \text{ N}$.

(d) The 3-kg block models the heavy block of wood. The contact force on your back is represented by *Q*, which is much less than the force *F*. The difference between *F* and *Q* is the net force causing

acceleration of the 5-kg pair of objects. The acceleration is real and nonzero, but lasts for so short a time that it never is associated with a large velocity. The frame of the building and your legs exert forces, small relative to the hammer blow, to bring the partition, block, and you to rest again over a time large relative to the hammer blow. This problem lends itself to interesting lecture demonstrations. One person can hold a lead brick in one hand while another hits the brick with a hammer.

P5.68 Since it has a larger mass, we expect the 8.00-kg block to move down the plane. The acceleration for both blocks should have the same magnitude since they are joined together by a non-stretching string. Define up the left hand plane as positive for the 3.50-kg object and down the right hand plane as positive for the 8.00-kg object.

$$\sum_{i=1}^{n} F_{1} = m_{1}a_{1}: -m_{1}g\sin 35.0^{\circ} + T = m_{1}a$$

$$\sum_{i=1}^{n} F_{2} = m_{2}a_{2}: m_{2}g\sin 35.0^{\circ} - T = m_{2}a$$

and

$$-(3.50)(9.80) \sin 35.0^\circ + T = 3.50a$$

(8.00)(9.80) $\sin 35.0^\circ - T = 8.00a$

Adding, we obtain

$$+45.0 \text{ N} - 19.7 \text{ N} = (11.5 \text{ kg})a.$$

 $a = 2.20 \text{ m/s}^2$

By substitution,

$$-19.7 \text{ N} + T = (3.50 \text{ kg})(2.20 \text{ m/s}^2) = 7.70 \text{ N}.$$

(a) The tension is

FIG. P5.68