(a) Pulley P_{1} has acceleration a_{2}.

Since m_{1} moves twice the distance P_{1} moves in the same time, m_{1} has twice the acceleration of P_{1}, i.e., $a_{1}=2 a_{2}$.
(b) From the figure, and using

$$
\begin{align*}
\sum F=m a: \quad m_{2} g-T_{2} & =m_{2} a_{2} \tag{1}\\
T_{1} & =m_{1} a_{1}=2 m_{1} a_{2} \tag{2}
\end{align*}
$$

FIG. P5.34

Equation (1) becomes $m_{2} g-2 T_{1}=m_{2} a_{2}$. This equation combined with Equation (2) yields

$$
\begin{gathered}
\frac{T_{1}}{m_{1}}\left(2 m_{1}+\frac{m_{2}}{2}\right)=m_{2} g \\
T_{1}=\frac{m_{1} m_{2}}{2 m_{1}+\frac{1}{2} m_{2}} g \text { and } T_{2}=\frac{m_{1} m_{2}}{m_{1}+\frac{1}{4} m_{2}} g .
\end{gathered}
$$

(c) From the values of T_{1} and T_{2} we find that

$$
a_{1}=\frac{T_{1}}{m_{1}}=\frac{m_{2} g}{2 m_{1}+\frac{1}{2} m_{2}} \text { and } a_{2}=\frac{1}{2} a_{1}=\frac{m_{2} g}{4 m_{1}+m_{2}} .
$$

P5.37

$$
\begin{aligned}
\sum F_{y}=m a_{y}: \quad+n-m g & =0 \\
f_{s} \leq \mu_{s} n & =\mu_{s} m g
\end{aligned}
$$

This maximum magnitude of static friction acts so long as the tires roll without skidding.

$$
\sum F_{x}=m a_{x}: \quad-f_{s}=m a
$$

The maximum acceleration is

$$
a=-\mu_{s} g
$$

The initial and final conditions are: $x_{i}=0, v_{i}=50.0 \mathrm{mi} / \mathrm{h}=22.4 \mathrm{~m} / \mathrm{s}, v_{f}=0$

$$
v_{f}^{2}=v_{i}^{2}+2 a\left(x_{f}-x_{i}\right):-v_{i}^{2}=-2 \mu_{s} g x_{f}
$$

(a) $\quad x_{f}=\frac{v_{i}^{2}}{2 \mu g}$

$$
x_{f}=\frac{(22.4 \mathrm{~m} / \mathrm{s})^{2}}{2(0.100)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=256 \mathrm{~m}
$$

(b) $\quad x_{f}=\frac{v_{i}^{2}}{2 \mu g}$
$x_{f}=\frac{(22.4 \mathrm{~m} / \mathrm{s})^{2}}{2(0.600)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=42.7 \mathrm{~m}$

P5.44 Let a represent the positive magnitude of the acceleration $-a \hat{\mathbf{j}}$ of m_{1}, of the acceleration $-a \hat{\mathbf{i}}$ of m_{2}, and of the acceleration $+a \hat{\mathbf{j}}$ of m_{3}. Call T_{12} the tension in the left rope and T_{23} the tension in the cord on the right.

$$
\begin{aligned}
& \text { For } m_{1}, \quad \quad \sum F_{y}=m a_{y} \quad+T_{12}-m_{1} g=-m_{1} a \\
& \text { For } m_{2}, \quad \quad \sum F_{x}=m a_{x} \\
& -T_{12}+\mu_{k} n+T_{23}=-m_{2} a
\end{aligned}
$$

$$
\begin{array}{lll}
\text { and } & \sum F_{y}=m a_{y} & n-m_{2} g=0 \\
\text { for } m_{3}, & \sum F_{y}=m a_{y} & T_{23}-m_{3} g=+m_{3} a
\end{array}
$$

we have three simultaneous equations

$$
\begin{aligned}
-T_{12}+39.2 \mathrm{~N} & =(4.00 \mathrm{~kg}) a \\
+T_{12}-0.350(9.80 \mathrm{~N})-T_{23} & =(1.00 \mathrm{~kg}) a \\
+T_{23}-19.6 \mathrm{~N} & =(2.00 \mathrm{~kg}) a
\end{aligned}
$$

(a) Add them up:

FIG. P5.44

$$
\begin{gathered}
+39.2 \mathrm{~N}-3.43 \mathrm{~N}-19.6 \mathrm{~N}=(7.00 \mathrm{~kg}) a \\
a=2.31 \mathrm{~m} / \mathrm{s}^{2}, \text { down for } m_{1}, \text { left for } m_{2} \text {, and up for } m_{3} .
\end{gathered}
$$

(b) Now $-T_{12}+39.2 \mathrm{~N}=(4.00 \mathrm{~kg})\left(2.31 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
T_{12}=30.0 \mathrm{~N}
$$

and $T_{23}-19.6 \mathrm{~N}=(2.00 \mathrm{~kg})\left(2.31 \mathrm{~m} / \mathrm{s}^{2}\right)$
$T_{23}=24.2 \mathrm{~N}$

P5.54

$$
\begin{array}{r}
18 \mathrm{~N}-P=(2 \mathrm{~kg}) a \\
P-Q=(3 \mathrm{~kg}) a \\
Q=(4 \mathrm{~kg}) a
\end{array}
$$

FIG. P5.54

$$
a=2.00 \mathrm{~m} / \mathrm{s}^{2} .
$$

(b) $\quad Q=4 \mathrm{~kg}\left(2 \mathrm{~m} / \mathrm{s}^{2}\right)=8.00 \mathrm{~N}$ net force on the 4 kg
$P-8 \mathrm{~N}=3 \mathrm{~kg}\left(2 \mathrm{~m} / \mathrm{s}^{2}\right)=6.00 \mathrm{~N}$ net force on the 3 kg and $P=14 \mathrm{~N}$
$18 \mathrm{~N}-14 \mathrm{~N}=2 \mathrm{~kg}\left(2 \mathrm{~m} / \mathrm{s}^{2}\right)=4.00 \mathrm{~N}$ net force on the 2 kg
(c) From above, $Q=8.00 \mathrm{~N}$ and $P=14.0 \mathrm{~N}$.
(d) The 3-kg block models the heavy block of wood. The contact force on your back is represented by Q, which is much less than the force F. The difference between F and Q is the net force causing
acceleration of the $5-\mathrm{kg}$ pair of objects. The acceleration is real and nonzero, but lasts for so short a time that it never is associated with a large velocity. The frame of the building and your legs exert forces, small relative to the hammer blow, to bring the partition, block, and you to rest again over a time large relative to the hammer blow. This problem lends itself to interesting lecture demonstrations. One person can hold a lead brick in one hand while another hits the brick with a hammer.

P5.68 Since it has a larger mass, we expect the $8.00-\mathrm{kg}$ block to move down the plane. The acceleration for both blocks should have the same magnitude since they are joined together by a non-stretching string. Define up the left hand plane as positive for the $3.50-\mathrm{kg}$ object and down the right hand plane as positive for the $8.00-\mathrm{kg}$ object.

$$
\begin{array}{rlrl}
\sum F_{1} & =m_{1} a_{1}: & -m_{1} g \sin 35.0^{\circ}+T & =m_{1} a \\
\sum F_{2}=m_{2} a_{2}: & m_{2} g \sin 35.0^{\circ}-T & =m_{2} a
\end{array}
$$

FIG. P5.68
and

$$
\begin{aligned}
-(3.50)(9.80) \sin 35.0^{\circ}+T & =3.50 a \\
(8.00)(9.80) \sin 35.0^{\circ}-T & =8.00 a .
\end{aligned}
$$

Adding, we obtain

$$
+45.0 \mathrm{~N}-19.7 \mathrm{~N}=(11.5 \mathrm{~kg}) a
$$

(b) Thus the acceleration is

$$
a=2.20 \mathrm{~m} / \mathrm{s}^{2} \text {. }
$$

By substitution,

$$
-19.7 \mathrm{~N}+T=(3.50 \mathrm{~kg})\left(2.20 \mathrm{~m} / \mathrm{s}^{2}\right)=7.70 \mathrm{~N} .
$$

(a) The tension is

$$
T=27.4 \mathrm{~N} .
$$

