P7.40 (a) The distance moved upward in the first 3.00 s is

$$
\Delta y=\bar{v} t=\left[\frac{0+1.75 \mathrm{~m} / \mathrm{s}}{2}\right](3.00 \mathrm{~s})=2.63 \mathrm{~m} .
$$

The motor and the earth's gravity do work on the elevator car:

$$
\begin{aligned}
& \frac{1}{2} m v_{i}^{2}+W_{\text {motor }}+m g \Delta y \cos 180^{\circ}=\frac{1}{2} m v_{f}^{2} \\
& W_{\text {motor }}=\frac{1}{2}(650 \mathrm{~kg})(1.75 \mathrm{~m} / \mathrm{s})^{2}-0+(650 \mathrm{~kg}) g(2.63 \mathrm{~m})=1.77 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

Also, $W=\bar{F}_{t}$ so $\overline{\mathrm{F}}=\frac{W}{t}=\frac{1.77 \times 10^{4} \mathrm{~J}}{3.00 \mathrm{~s}}=5.91 \times 10^{3} \mathrm{~W}=7.92 \mathrm{hp}$.
(b) When moving upward at constant speed $(v=1.75 \mathrm{~m} / \mathrm{s})$ the applied force equals the weight $=(650 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=6.37 \times 10^{3} \mathrm{~N}$. Therefore,
$\mathrm{P}=F v=\left(6.37 \times 10^{3} \mathrm{~N}\right)(1.75 \mathrm{~m} / \mathrm{s})=1.11 \times 10^{4} \mathrm{~W}=14.9 \mathrm{hp}$.
(a) Burning 1 lb of fat releases energy $\quad 1 \mathrm{lb}\left(\frac{454 \mathrm{~g}}{1 \mathrm{lb}}\right)\left(\frac{9 \mathrm{kcal}}{1 \mathrm{~g}}\right)\left(\frac{4186 \mathrm{~J}}{1 \mathrm{kcal}}\right)=1.71 \times 10^{7} \mathrm{~J}$.

The mechanical energy output is $\quad\left(1.71 \times 10^{7} \mathrm{~J}\right)(0.20)=n F \Delta r \cos \theta$.

Then $\quad 3.42 \times 10^{6} \mathrm{~J}=n m g \Delta y \cos 0^{\circ}$

$$
\begin{aligned}
& 3.42 \times 10^{6} \mathrm{~J}=n(50 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(80 \text { steps })(0.150 \mathrm{~m}) \\
& 3.42 \times 10^{6} \mathrm{~J}=n\left(5.88 \times 10^{3} \mathrm{~J}\right)
\end{aligned}
$$

where the number of times she must climb the steps is $n=\frac{3.42 \times 10^{6} \mathrm{~J}}{5.88 \times 10^{3} \mathrm{~J}}=582$. This method is impractical compared to limiting food intake.
continued on next page
(b) Her mechanical power output is
$\mathrm{P}=\frac{W}{t}=\frac{5.88 \times 10^{3} \mathrm{~J}}{65 \mathrm{~s}}=90.5 \mathrm{~W}=90.5 \mathrm{~W}\left(\frac{1 \mathrm{hp}}{746 \mathrm{~W}}\right)=0.121 \mathrm{hp}$.

P7.65 If positive F represents an outward force, (same as direction as r), then

$$
\begin{aligned}
& W=\int_{i}^{f} \mathbf{F} \cdot d \mathbf{r}=\int_{r_{i}}^{r_{f}}\left(2 F_{0} \sigma^{13} r^{-13}-F_{0} \sigma^{7} r^{-7}\right) d r \\
& W=\frac{2 F_{0} \sigma^{13} r^{-12}}{-12}-\left.\frac{F_{0} \sigma^{7} r^{-6}}{-6}\right|_{r_{i}} ^{r_{f}} \\
& W=\frac{-F_{0} \sigma^{13}\left(r_{f}^{-12}-r_{i}^{-12}\right)}{6}+\frac{F_{0} \sigma^{7}\left(r_{f}^{-6}-r_{i}^{-6}\right)}{6}=\frac{F_{0} \sigma^{7}}{6}\left[r_{f}^{-6}-r_{i}^{-6}\right]-\frac{F_{0} \sigma^{13}}{6}\left[r_{f}^{-12}-r_{i}^{-12}\right] \\
& W=1.03 \times 10^{-77}\left[r_{f}^{-6}-r_{i}^{-6}\right]-1.89 \times 10^{-134}\left[r_{f}^{-12}-r_{i}^{-12}\right] \\
& W=1.03 \times 10^{-77}\left[1.88 \times 10^{-6}-2.44 \times 10^{-6}\right] 10^{60}-1.89 \times 10^{-134}\left[3.54 \times 10^{-12}-5.96 \times 10^{-8}\right] 10^{120} \\
& W=-2.49 \times 10^{-21} \mathrm{~J}+1.12 \times 10^{-21} \mathrm{~J}=-1.37 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

Chapter Eight: Potential Energy

SOLUTIONS TO PROBLEMS

*P8.7

$$
\begin{aligned}
& \text { (a) } \begin{array}{l}
\frac{1}{2} m v_{i}^{2}+\frac{1}{2} k x_{i}^{2}=\frac{1}{2} m v_{f}^{2}+\frac{1}{2} k x_{f}^{2} \\
0+\frac{1}{2}(10 \mathrm{~N} / \mathrm{m})(-0.18 \mathrm{~m})^{2}=\frac{1}{2}(0.15 \mathrm{~kg}) v_{f}^{2}+0 \\
v_{f}=(0.18 \mathrm{~m}) \sqrt{\left(\frac{10 \mathrm{~N}}{0.15 \mathrm{~kg} \cdot \mathrm{~m}}\right)\left(\frac{1 \mathrm{~kg} \cdot \mathrm{~m}}{1 \mathrm{~N} \cdot \mathrm{~s}^{2}}\right)}=1.47 \mathrm{~m} / \mathrm{s} \\
\text { (b) } \\
K_{i}+U_{s i}=K_{f}+U_{s f} \\
0+\frac{1}{2}(10 \mathrm{~N} / \mathrm{m})(-0.18 \mathrm{~m})^{2}=\frac{1}{2}(0.15 \mathrm{~kg}) v_{f}^{2} \\
+\frac{1}{2}(10 \mathrm{~N} / \mathrm{m})(0.25 \mathrm{~m}-0.18 \mathrm{~m})^{2} \\
0.162 \mathrm{~J}=\frac{1}{2}(0.15 \mathrm{~kg}) v_{f}^{2}+0.0245 \mathrm{~J} \\
v_{f}=\sqrt{\frac{2(0.138 \mathrm{~J})}{0.15 \mathrm{~kg}}}=1.35 \mathrm{~m} / \mathrm{s}
\end{array}
\end{aligned}
$$

(a)

(b)

FIG. P8. 7
$\mathbf{P 8 . 1 7}$ (a) $K_{i}+U_{g i}=K_{f}+U_{g f}$

$$
\begin{aligned}
& \frac{1}{2} m v_{i}^{2}+0=\frac{1}{2} m v_{f}^{2}+m g y_{f} \\
& \frac{1}{2} m v_{x i}^{2}+\frac{1}{2} m v_{y i}^{2}=\frac{1}{2} m v_{x f}^{2}+m g y_{f}
\end{aligned}
$$

But $v_{x i}=v_{x f}$, so for the first ball

$$
y_{f}=\frac{v_{y i}^{2}}{2 g}=\frac{\left(1000 \sin 37.0^{\circ}\right)^{2}}{2(9.80)}=1.85 \times 10^{4} \mathrm{~m}
$$

and for the second
continued on next page

$$
y_{f}=\frac{(1000)^{2}}{2(9.80)}=5.10 \times 10^{4} \mathrm{~m}
$$

(b) The total energy of each is constant with value
$\frac{1}{2}(20.0 \mathrm{~kg})(1000 \mathrm{~m} / \mathrm{s})^{2}=1.00 \times 10^{7} \mathrm{~J}$.
(a) $\quad W=\int \mathbf{F} \cdot d \mathbf{r}$ and if the force is constant, this can be written as

$$
W=\mathbf{F} \cdot \int d \mathbf{r}=\mathbf{F} \cdot\left(\mathbf{r}_{f}-\mathbf{r}_{i}\right), \text { which depends only on end points, not path. }
$$

(b)

$$
\begin{aligned}
& W=\int \mathbf{F} \cdot d \mathbf{r}=\int(3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}) \cdot(d x \hat{\mathbf{i}}+d y \hat{\mathbf{j}})=(3.00 \mathrm{~N}) \int_{0}^{5.00 \mathrm{~m}} d x+(4.00 \mathrm{~N}) \int_{0}^{5.00 \mathrm{~m}} d y \\
& W=\left.(3.00 \mathrm{~N}) x\right|_{0} ^{5.00 \mathrm{~m}}+\left.(4.00 \mathrm{~N}) y\right|_{0} ^{5.00 \mathrm{~m}}=15.0 \mathrm{~J}+20.0 \mathrm{~J}=35.0 \mathrm{~J}
\end{aligned}
$$

The same calculation applies for all paths.
(a) $\quad(\Delta K)_{A \rightarrow B}=\sum W=W_{g}=m g \Delta h=m g(5.00-3.20)$
$\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}=m(9.80)(1.80)$

$$
v_{B}=5.94 \mathrm{~m} / \mathrm{s}
$$

Similarly, $v_{C}=\sqrt{v_{A}^{2}+2 g(5.00-2.00)}=7.67 \mathrm{~m} / \mathrm{s}$

FIG. P8. 24
(b) $\left.\quad W_{g}\right|_{A \rightarrow C}=m g(3.00 \mathrm{~m})=147 \mathrm{~J}$

As the locomotive moves up the hill at constant speed, its output power goes into internal energy plus gravitational energy of the locomotive-Earth system:

$$
\mathbf{P} t=m g y+f \Delta r=m g \Delta r \sin \theta+f \Delta r \quad \mathrm{P}=m g v_{f} \sin \theta+f v_{f}
$$

As the locomotive moves on level track,

$$
\begin{array}{ll}
\mathrm{P}=f v_{i} & 1000 \mathrm{hp}\left(\frac{746 \mathrm{~W}}{1 \mathrm{hp}}\right)=f(27 \mathrm{~m} / \mathrm{s}) \\
f=2.76 \times 10^{4} \mathrm{~N} &
\end{array}
$$

Then also $746000 \mathrm{~W}=(160000 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) v_{f}\left(\frac{5 \mathrm{~m}}{100 \mathrm{~m}}\right)+\left(2.76 \times 10^{4} \mathrm{~N}\right) v_{f}$

$$
v_{f}=\frac{746000 \mathrm{~W}}{1.06 \times 10^{5} \mathrm{~N}}=7.04 \mathrm{~m} / \mathrm{s}
$$

P8.35 (a) $\quad(K+U)_{i}+\Delta E_{\text {mech }}=(K+U)_{f}:$

$$
\begin{aligned}
& 0+\frac{1}{2} k x^{2}-f \Delta x=\frac{1}{2} m v^{2}+0 \\
& \frac{1}{2}(8.00 \mathrm{~N} / \mathrm{m})\left(5.00 \times 10^{-2} \mathrm{~m}\right)^{2}-\left(3.20 \times 10^{-2} \mathrm{~N}\right)(0.150 \mathrm{~m})=\frac{1}{2}\left(5.30 \times 10^{-3} \mathrm{~kg}\right) v^{2} \\
& v=\sqrt{\frac{2\left(5.20 \times 10^{-3} \mathrm{~J}\right)}{5.30 \times 10^{-3} \mathrm{~kg}}}=1.40 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) When the spring force just equals the friction force, the ball will stop speeding up. Here $\mathbf{F}_{s} \mid=k x$; the spring is compressed by

$$
\frac{3.20 \times 10^{-2} \mathrm{~N}}{8.00 \mathrm{~N} / \mathrm{m}}=0.400 \mathrm{~cm}
$$

and the ball has moved

$$
5.00 \mathrm{~cm}-0.400 \mathrm{~cm}=4.60 \mathrm{~cm} \text { from the start. }
$$

(c) Between start and maximum speed points,

$$
\begin{aligned}
& \frac{1}{2} k x_{i}^{2}-f \Delta x=\frac{1}{2} m v^{2}+\frac{1}{2} k x_{f}^{2} \\
& \frac{1}{2} 8.00\left(5.00 \times 10^{-2}\right)^{2}-\left(3.20 \times 10^{-2}\right)\left(4.60 \times 10^{-2}\right)=\frac{1}{2}\left(5.30 \times 10^{-3}\right) v^{2}+\frac{1}{2} 8.00\left(4.00 \times 10^{-3}\right)^{2} \\
& v=1.79 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

P8.63
Launch speed is found from

$$
m g\left(\frac{4}{5} h\right)=\frac{1}{2} m v^{2}: \quad \begin{aligned}
& v=\sqrt{2 g\left(\frac{4}{5}\right) h} \\
& v_{y}=v \sin \theta
\end{aligned}
$$

The height y above the water (by conservation of energy for the child-Earth system) is found from

FIG. P8. 63

$$
\begin{aligned}
& \quad m g y=\frac{1}{2} m v_{y}^{2}+m g \frac{h}{5} \text { (since } \frac{1}{2} m v_{x}^{2} \text { is constant in projectile motion) } \\
& y=\frac{1}{2 g} v_{y}^{2}+\frac{h}{5}=\frac{1}{2 g} v^{2} \sin ^{2} \theta+\frac{h}{5} \\
& y=\frac{1}{2 g}\left[2 g\left(\frac{4}{5} h\right)\right] \sin ^{2} \theta+\frac{h}{5}=\frac{4}{5} h \sin ^{2} \theta+\frac{h}{5}
\end{aligned}
$$

