Chapter Nine: Linear Momentum and Collisions

SOLUTIONS TO PROBLEMS

P9.4 (a) For the system of two blocks $\Delta p=0$, or

$$
p_{i}=p_{f}
$$

$$
\text { Therefore, } \quad 0=M v_{m}+(3 M)(2.00 \mathrm{~m} / \mathrm{s})
$$

Solving gives $\quad v_{m}=-6.00 \mathrm{~m} / \mathrm{s}$ (motion toward the left).

FIG. P9.4

P9.10 Assume the initial direction of the ball in the $-x$ direction.
(a) Impulse, $\mathbf{I}=\Delta \mathbf{p}=\mathbf{p}_{f}-\mathbf{p}_{i}=(0.0600)(40.0) \hat{\mathbf{i}}-(0.0600)(50.0)(-\hat{\mathbf{i}})=5.40 \hat{\mathbf{i}} \mathrm{~N} \cdot \mathrm{~s}$
(b) Work $=K_{f}-K_{i}=\frac{1}{2}(0.0600)\left[(40.0)^{2}-(50.0)^{2}\right]=-27.0 \mathrm{~J}$

P9.18 (a) $m v_{1 i}+3 m v_{2 i}=4 m v_{f}$ where $m=2.50 \times 10^{4} \mathrm{~kg}$

$$
v_{f}=\frac{4.00+3(2.00)}{4}=2.50 \mathrm{~m} / \mathrm{s}
$$

(b)
$K_{f}-K_{i}=\frac{1}{2}(4 m) v_{f}^{2}-\left[\frac{1}{2} m v_{1 i}^{2}+\frac{1}{2}(3 m) v_{2 i}^{2}\right]=\left(2.50 \times 10^{4}\right)(12.5-8.00-6.00)=-3.75 \times 10^{4} \mathrm{~J}$

P9.20 v_{1}, speed of m_{1} at B before collision.
$\frac{1}{2} m_{1} v_{1}^{2}=m_{1} g h$
$v_{1}=\sqrt{2(9.80)(5.00)}=9.90 \mathrm{~m} / \mathrm{s}$
$v_{1 f}$, speed of m_{1} at B just after collision.
$v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1}=-\frac{1}{3}(9.90) \mathrm{m} / \mathrm{s}=-3.30 \mathrm{~m} / \mathrm{s}$

FIG. P9. 20

At the highest point (after collision)
$m_{1} g h_{\max }=\frac{1}{2} m_{1}(-3.30)^{2} \quad h_{\max }=\frac{(-3.30 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.556 \mathrm{~m}$

P9.60
(a) The initial momentum of the system is zero, which remains constant throughout the motion.
Therefore, when m_{1} leaves the wedge, we must have

$$
m_{2} v_{\text {wedge }}+m_{1} v_{\text {block }}=0
$$

or $\quad(3.00 \mathrm{~kg}) v_{\text {wedge }}+(0.500 \mathrm{~kg})(+4.00 \mathrm{~m} / \mathrm{s})=0$
so $\quad v_{\text {wedge }}=-0.667 \mathrm{~m} / \mathrm{s}$
(b) Using conservation of energy for the block-wedgeEarth system as the block slides down the smooth (frictionless) wedge, we have

FIG. P9.60

$$
\left[K_{\text {block }}+U_{\text {system }}\right]_{i}+\left[K_{\text {wedge }}\right]_{i}=\left[K_{\text {block }}+U_{\text {system }}\right]_{f}+\left[K_{\text {wedge }}\right]_{f}
$$

or

$$
\left[0+m_{1} g h\right]+0=\left[\frac{1}{2} m_{1}(4.00)^{2}+0\right]+\frac{1}{2} m_{2}(-0.667)^{2} \text { which gives } h=0.952 \mathrm{~m}
$$

Chapter Ten: Rotation of a Rigid Object
About a Fixed Axis

SOLUTIONS TO PROBLEMS

P10.5 $\omega_{i}=\frac{100 \mathrm{rev}}{1.00 \mathrm{~min}}\left(\frac{1 \mathrm{~min}}{60.0 \mathrm{~s}}\right)\left(\frac{2 \pi \mathrm{rad}}{1.00 \mathrm{rev}}\right)=\frac{10 \pi}{3} \mathrm{rad} / \mathrm{s}, \omega_{f}=0$
(a) $t=\frac{\omega_{f}-\omega_{i}}{\alpha}=\frac{0-\frac{10 \pi}{3}}{-2.00} s=5.24 \mathrm{~s}$
(b) $\quad \theta_{f}=\bar{\omega} t=\left(\frac{\omega_{f}+\omega_{i}}{2}\right) t=\left(\frac{10 \pi}{6} \mathrm{rad} / \mathrm{s}\right)\left(\frac{10 \pi}{6} \mathrm{~s}\right)=27.4 \mathrm{rad}$

P10.15
(a) $\quad \omega=\frac{v}{r}=\frac{25.0 \mathrm{~m} / \mathrm{s}}{1.00 \mathrm{~m}}=25.0 \mathrm{rad} / \mathrm{s}$
(b) $\quad \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha(\Delta \theta)$

$$
\alpha=\frac{\omega_{f}^{2}-\omega_{i}^{2}}{2(\Delta \theta)}=\frac{(25.0 \mathrm{rad} / \mathrm{s})^{2}-0}{2[(1.25 \mathrm{rev})(2 \pi \mathrm{rad} / \mathrm{rev})]}=39.8 \mathrm{rad} / \mathrm{s}^{2}
$$

(c) $\Delta t=\frac{\Delta \omega}{\alpha}=\frac{25.0 \mathrm{rad} / \mathrm{s}}{39.8 \mathrm{rad} / \mathrm{s}^{2}}=0.628 \mathrm{~s}$

P10.20 $m_{1}=4.00 \mathrm{~kg}, r_{1}=\left|y_{1}\right|=3.00 \mathrm{~m}$;
$m_{2}=2.00 \mathrm{~kg}, r_{2}=\left|y_{2}\right|=2.00 \mathrm{~m} ;$
$m_{3}=3.00 \mathrm{~kg}, r_{3}=\left|y_{3}\right|=4.00 \mathrm{~m}$;
$\omega=2.00 \mathrm{rad} / \mathrm{s}$ about the x-axis

$$
\begin{array}{rlrl}
\text { (a) } \begin{aligned}
I_{x} & =m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+m_{3} r_{3}^{2} \\
I_{x} & =4.00(3.00)^{2}+2.00(2.00)^{2}+3.00(4.00)^{2}=92.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned} \\
K_{R} & =\frac{1}{2} I_{x} \omega^{2}=\frac{1}{2}(92.0)(2.00)^{2}=184 \mathrm{~J} & \\
\text { (b) } & \\
v_{1} & =r_{1} \omega=3.00(2.00)=6.00 \mathrm{~kg} / \mathrm{s} & \\
& v_{2} & =r_{2} \omega=2.00(2.00)=4.00 \mathrm{~m} / \mathrm{s} & K_{1}=\frac{1}{2} m_{1} v_{1}^{2}=\frac{1}{2}(4.00)(6.00)^{2}=72.0 \mathrm{~J} \\
& v_{3} & =r_{3} \omega=4.00(2.00)=8.00 \mathrm{~m} / \mathrm{s} & K_{2}=\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2}(2.00)(4.00)^{2}=16.0 \mathrm{~J} \\
K=K_{1}+K_{2}+K_{3}=72.0+16.0+96.0=184 \mathrm{~J}=\frac{1}{2} I_{x} \omega^{2} & K_{3}=\frac{1}{2} m_{3} v_{3}^{2}=\frac{1}{2}(3.00)(8.00)^{2}=96.0 \mathrm{~J}
\end{array}
$$

P10.32 The normal force exerted by the ground on each wheel is

$$
n=\frac{m g}{4}=\frac{(1500 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{4}=3680 \mathrm{~N}
$$

The torque of friction can be as large as

$$
\tau_{\max }=f_{\max } r=\left(\mu_{\mathrm{s}} n\right) r=(0.800)(3680 \mathrm{~N})(0.300 \mathrm{~m})=882 \mathrm{~N} \cdot \mathrm{~m}
$$

The torque of the axle on the wheel can be equally as large as the light wheel starts to turn without slipping.

P10.33 In the previous problem we calculated the maximum torque that can be applied without skidding to be $882 \mathrm{~N} \cdot \mathrm{~m}$. This same torque is to be applied by the frictional force, f, between the brake pad and the rotor for this wheel. Since the wheel is slipping against the brake pad, we use the coefficient of kinetic friction to calculate the normal force.

$$
\tau=f r=\left(\mu_{k} n\right) r, \text { so } n=\frac{\tau}{\mu_{k} r}=\frac{882 \mathrm{~N} \cdot \mathrm{~m}}{(0.500)(0.220 \mathrm{~m})}=8.02 \times 10^{3} \mathrm{~N}=8.02 \mathrm{kN}
$$

