$$
\begin{gathered}
\omega_{f}=\omega_{i}+\alpha t: \quad 10.0 \mathrm{rad} / \mathrm{s}=0+\alpha(6.00 \mathrm{~s}) \\
\alpha=\frac{10.00}{6.00} \mathrm{rad} / \mathrm{s}^{2}=1.67 \mathrm{rad} / \mathrm{s}^{2}
\end{gathered}
$$

(a) $\quad \sum \tau=36.0 \mathrm{~N} \cdot \mathrm{~m}=I \alpha: \quad I=\frac{\sum \tau}{\alpha}=\frac{36.0 \mathrm{~N} \cdot \mathrm{~m}}{1.67 \mathrm{rad} / \mathrm{s}^{2}}=21.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
(b) $\quad \omega_{f}=\omega_{i}+\alpha t: \quad 0=10.0+\alpha(60.0)$

$$
\alpha=-0.167 \mathrm{rad} / \mathrm{s}^{2}
$$

$$
|\tau|=|I \alpha|=\left(21.6 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(0.167 \mathrm{rad} / \mathrm{s}^{2}\right)=3.60 \mathrm{~N} \cdot \mathrm{~m}
$$

(c) Number of revolutions $\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$

During first $6.00 \mathrm{~s} \quad \theta_{f}=\frac{1}{2}(1.67)(6.00)^{2}=30.1 \mathrm{rad}$
During next $60.0 \mathrm{~s} \quad \theta_{f}=10.0(60.0)-\frac{1}{2}(0.167)(60.0)^{2}=299 \mathrm{rad}$
$\theta_{\text {total }}=329 \mathrm{rad}\left(\frac{1 \mathrm{rev}}{2 \pi \mathrm{rad}}\right)=52.4 \mathrm{rev}$

P10.37
For m_{1},

$$
\begin{aligned}
& \sum F_{y}=m a_{y}: \\
& +n-m_{1} g=0 \\
& n_{1}=m_{1} g=19.6 \mathrm{~N} \\
& f_{k 1}=\mu_{k} n_{1}=7.06 \mathrm{~N} \\
& \sum F_{x}=m a_{x}: \\
& -7.06 \mathrm{~N}+T_{1}=(2.00 \mathrm{~kg}) a
\end{aligned}
$$

For the pulley,

$$
\begin{aligned}
& \sum \tau=I \alpha: \\
& -T_{1} R+T_{2} R=\frac{1}{2} M R^{2}\left(\frac{a}{R}\right)
\end{aligned}
$$

FIG. P10.37

$$
\begin{align*}
& -T_{1}+T_{2}=\frac{1}{2}(10.0 \mathrm{~kg}) a \\
& -T_{1}+T_{2}=(5.00 \mathrm{~kg}) a \tag{2}
\end{align*}
$$

For m_{2},
$+n_{2}-m_{2} g \cos \theta=0$

$$
\begin{align*}
& n_{2}=6.00 \mathrm{~kg}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\cos 30.0^{\circ}\right) \\
&=50.9 \mathrm{~N} \\
& f_{k 2}=\mu_{k} n_{2} \\
&=18.3 \mathrm{~N}: \\
&-18.3 \mathrm{~N}-T_{2}+m_{2} \sin \theta=m_{2} a \\
&-18.3 \mathrm{~N}-T_{2}+29.4 \mathrm{~N}=(6.00 \mathrm{~kg}) a \tag{3}
\end{align*}
$$

(a) Add equations (1), (2), and (3):

$$
\begin{aligned}
& -7.06 \mathrm{~N}-18.3 \mathrm{~N}+29.4 \mathrm{~N}=(13.0 \mathrm{~kg}) a \\
& a=\frac{4.01 \mathrm{~N}}{13.0 \mathrm{~kg}}=0.309 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

(b) $\quad T_{1}=2.00 \mathrm{~kg}\left(0.309 \mathrm{~m} / \mathrm{s}^{2}\right)+7.06 \mathrm{~N}=7.67 \mathrm{~N}$
$T_{2}=7.67 \mathrm{~N}+5.00 \mathrm{~kg}\left(0.309 \mathrm{~m} / \mathrm{s}^{2}\right)=9.22 \mathrm{~N}$

P10.38 $I=\frac{1}{2} m R^{2}=\frac{1}{2}(100 \mathrm{~kg})(0.500 \mathrm{~m})^{2}=12.5 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$\omega_{i}=50.0 \mathrm{rev} / \mathrm{min}=5.24 \mathrm{rad} / \mathrm{s}$
$\alpha=\frac{\omega_{f}-\omega_{i}}{t}=\frac{0-5.24 \mathrm{rad} / \mathrm{s}}{6.00 \mathrm{~s}}=-0.873 \mathrm{rad} / \mathrm{s}^{2}$
$\tau=I \alpha=12.5 \mathrm{~kg} \cdot \mathrm{~m}^{2}\left(-0.873 \mathrm{rad} / \mathrm{s}^{2}\right)=-10.9 \mathrm{~N} \cdot \mathrm{~m}$

FIG. P10.38

The magnitude of the torque is given by $f R=10.9 \mathrm{~N} \cdot \mathrm{~m}$, where f is the force of friction.

Therefore, $\quad f=\frac{10.9 \mathrm{~N} \cdot \mathrm{~m}}{0.500 \mathrm{~m}} \quad$ and $\quad f=\mu_{k} n$
yields $\quad \mu_{k}=\frac{f}{n}=\frac{21.8 \mathrm{~N}}{70.0 \mathrm{~N}}=0.312$
P10.46 Choose the zero gravitational potential energy at the level where the masses pass.
$K_{f}+U_{g f}=K_{i}+U_{g i}+\Delta E$
$\frac{1}{2} m_{1} v^{2}+\frac{1}{2} m_{2} v^{2}+\frac{1}{2} I \omega^{2}=0+m_{1} g h_{1 i}+m_{2} g h_{2 i}+0$
$\frac{1}{2}(15.0+10.0) v^{2}+\frac{1}{2}\left[\frac{1}{2}(3.00) R^{2}\right]\left(\frac{v}{R}\right)^{2}=15.0(9.80)(1.50)+10.0(9.80)(-1.50)$
$\frac{1}{2}(26.5 \mathrm{~kg}) v^{2}=73.5 \mathrm{~J} \Rightarrow v=2.36 \mathrm{~m} / \mathrm{s}$

P10.64 At the instant it comes off the wheel, the first drop has a velocity v_{1}, directed upward. The magnitude of this velocity is found from

$$
\begin{aligned}
& K_{i}+U_{g i}=K_{f}+U_{g f} \\
& \frac{1}{2} m v_{1}^{2}+0=0+m g h_{1} \text { or } v_{1}=\sqrt{2 g h_{1}}
\end{aligned}
$$

and the angular velocity of the wheel at the instant the first drop leaves is

$$
\omega_{1}=\frac{v_{1}}{R}=\sqrt{\frac{2 g h_{1}}{R^{2}}} .
$$

Similarly for the second drop: $v_{2}=\sqrt{2 g h_{2}}$ and $\omega_{2}=\frac{v_{2}}{R}=\sqrt{\frac{2 g h_{2}}{R^{2}}}$.
The angular acceleration of the wheel is then

$$
a=\frac{\omega_{2}^{2}-\omega_{1}^{2}}{2 \theta}=\frac{\frac{2 g h_{2}}{R^{2}}-\frac{2 g h_{1}}{R^{2}}}{2(2 \pi)}=\frac{g\left(h_{2}-h_{1}\right)}{2 \pi R^{2}} .
$$

