Chapter 16

P16.18 (a) Let us write the wave function as

$$
\begin{aligned}
& y(x, t)=A \sin (k x+\omega t+\phi) \\
& y(0,0)=A \sin \phi=0.0200 \mathrm{~m} \\
& \left.\frac{d y}{d t}\right|_{0,0}=A \omega \cos \phi=-2.00 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{0.0250 \mathrm{~s}}=80.0 \pi / \mathrm{s}
$$

$$
A^{2}=x_{i}^{2}+\left(\frac{v_{i}}{\omega}\right)^{2}=(0.0200 \mathrm{~m})^{2}+\left(\frac{2.00 \mathrm{~m} / \mathrm{s}}{80.0 \pi / \mathrm{s}}\right)^{2}
$$

$$
A=0.0215 \mathrm{~m}
$$

(b) $\frac{A \sin \phi}{A \cos \phi}=\frac{0.0200}{\frac{-2}{80.0 \pi}}=-2.51=\tan \phi$

Your calculator's answer $\tan ^{-1}(-2.51)=-1.19 \mathrm{rad}$ has a negative sine and positive cosine, just the reverse of what is required. You must look beyond your calculator to find
$\phi=\pi-1.19 \mathrm{rad}=1.95 \mathrm{rad}$
(c) $v_{y, \text { max }}=A \omega=0.0215 \mathrm{~m}(80.0 \pi / \mathrm{s})=5.41 \mathrm{~m} / \mathrm{s}$
(d) $\quad \lambda=v_{x} T=(30.0 \mathrm{~m} / \mathrm{s})(0.0250 \mathrm{~s})=0.750 \mathrm{~m}$
$k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{0.750 \mathrm{~m}}=8.38 / \mathrm{m} \quad \omega=80.0 \pi / \mathrm{s}$
$y(x, t)=(0.0215 \mathrm{~m}) \sin (8.38 x \mathrm{rad} / \mathrm{m}+80.0 \pi t \mathrm{rad} / \mathrm{s}+1.95 \mathrm{rad})$

P16.19 (a) $f=\frac{v}{\lambda}=\frac{(1.00 \mathrm{~m} / \mathrm{s})}{2.00 \mathrm{~m}}=0.500 \mathrm{~Hz}$

$$
\omega=2 \pi f=2 \pi(0.500 / \mathrm{s})=3.14 \mathrm{rad} / \mathrm{s}
$$

(b) $\quad k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{2.00 \mathrm{~m}}=3.14 \mathrm{rad} / \mathrm{m}$
(c) $y=A \sin (k x-\omega t+\phi)$ becomes

$$
y=(0.100 \mathrm{~m}) \sin (3.14 x / \mathrm{m}-3.14 \mathrm{t} / \mathrm{s}+0)
$$

(d) For $x=0$ the wave function requires

$$
y=(0.100 \mathrm{~m}) \sin (-3.14 t / \mathrm{s})
$$

(e) $\quad y=(0.100 \mathrm{~m}) \sin (4.71 \mathrm{rad}-3.14 \mathrm{t} / \mathrm{s})$
(f) $\quad v_{y}=\frac{\partial y}{\partial t}=0.100 \mathrm{~m}(-3.14 / \mathrm{s}) \cos (3.14 x / \mathrm{m}-3.14 t / \mathrm{s})$

The cosine varies between +1 and -1 , so

$$
v_{y} \leq(0.314 \mathrm{~m} / \mathrm{s})
$$

P16.22 The mass per unit length is: $\mu=\frac{0.0600 \mathrm{~kg}}{5.00 \mathrm{~m}}=1.20 \times 10^{-2} \mathrm{~kg} / \mathrm{m}$.
The required tension is: $T=\mu \omega^{2}=(0.0120 \mathrm{~kg} / \mathrm{m})(50.0 \mathrm{~m} / \mathrm{s})^{2}=30.0 \mathrm{~N}$.
P16.34 $f=\frac{v}{\lambda}=\frac{30.0}{0.500}=60.0 \mathrm{~Hz} \quad \omega=2 \pi f=120 \pi \mathrm{rad} / \mathrm{s}$
*P16.44 The linear wave equation is $\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}$

$$
\begin{aligned}
& \text { If } \quad y=e^{b(x-v t)} \\
& \text { then } \frac{\partial y}{\partial t}=-b v e^{b(x-v t)} \text { and } \frac{\partial y}{\partial x}=b e^{b(x-v t)} \\
& \frac{\partial^{2} y}{\partial t^{2}}=b^{2} v^{2} e^{b(x-v t)} \text { and } \frac{\partial^{2} y}{\partial x^{2}}=b^{2} e^{b(x-v t)}
\end{aligned}
$$

Therefore, $\quad \frac{\partial^{2} y}{\partial t^{2}}=v^{2} \frac{\partial^{2} y}{\partial x^{2}}$, demonstrating that $e^{b(x-v t)}$ is a solution

Chapter 17

P17.3 Sound takes this time to reach the man:
$\frac{(20.0 \mathrm{~m}-1.75 \mathrm{~m})}{343 \mathrm{~m} / \mathrm{s}}=5.32 \times 10^{-2} \mathrm{~s}$
so the warning should be shouted no later than $\quad 0.300 \mathrm{~s}+5.32 \times 10^{-2} \mathrm{~s}=0.353 \mathrm{~s}$ before the pot strikes.

Since the whole time of fall is given by $y=\frac{1}{2} g t^{2}: \quad 18.25 \mathrm{~m}=\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right) t^{2}$
the warning needs to come
into the fall, when the pot has fallen
to be above the ground by

$$
t=1.93 \mathrm{~s}
$$

$$
1.93 \mathrm{~s}-0.353 \mathrm{~s}=1.58 \mathrm{~s}
$$

$$
\frac{1}{2}\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1.58 \mathrm{~s})^{2}=12.2 \mathrm{~m}
$$

$$
20.0 \mathrm{~m}-12.2 \mathrm{~m}=7.82 \mathrm{~m}
$$

P17.12
(a) $\quad \Delta P=(1.27 \mathrm{~Pa}) \sin \left(\frac{\pi x}{\mathrm{~m}}-\frac{340 \pi t}{\mathrm{~s}}\right)$ (SI units)

The pressure amplitude is: $\Delta P_{\max }=1.27 \mathrm{~Pa}$.
(b) $\quad \omega=2 \pi f=340 \pi / \mathrm{s}$, so $f=170 \mathrm{~Hz}$
(c) $k=\frac{2 \pi}{\lambda}=\pi / \mathrm{m}$, giving $\lambda=2.00 \mathrm{~m}$
(d) $\quad v=\lambda f=(2.00 \mathrm{~m})(170 \mathrm{~Hz})=340 \mathrm{~m} / \mathrm{s}$

P17.20 (a) $70.0 \mathrm{~dB}=10 \log \left(\frac{I}{1.00 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}}\right)$
Therefore, $I=\left(1.00 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}\right) 10^{(70.0 / 10)}=1.00 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2}$.
(b) $\quad I=\frac{\Delta P_{\max }^{2}}{2 \rho v}$, so

$$
\begin{aligned}
& \Delta P_{\max }=\sqrt{2 \rho v I}=\sqrt{2\left(1.20 \mathrm{~kg} / \mathrm{m}^{3}\right)(343 \mathrm{~m} / \mathrm{s})\left(1.00 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2}\right)} \\
& \Delta P_{\max }=90.7 \mathrm{mPa}
\end{aligned}
$$

*P17.26 (a) We have $\lambda=\frac{v}{f}$ and f is the same for all three waves. Since the speed is smallest in air, λ is smallest in air. It is larger by $\frac{1493 \mathrm{~m} / \mathrm{s}}{331 \mathrm{~m} / \mathrm{s}}=4.51$ times in water and by $\frac{5950}{331}=18.0$ times in iron.
(b) From $I=\frac{1}{2} \rho v \omega^{2} s_{\max }^{2} ; s_{\max }=\sqrt{\frac{2 I_{0}}{\rho v \omega_{0}^{2}}}, s_{\max }$ is smallest in iron, larger in water by

$$
\sqrt{\frac{\rho_{\text {iron }} v_{\text {iron }}}{\rho_{\text {water }} v_{\text {water }}}}=\sqrt{\frac{7860 \cdot 5950}{1000 \cdot 1493}}=5.60 \text { times }, \text { and larger in air by } \sqrt{\frac{7860 \cdot 5950}{1.29 \cdot 331}}=331 \text { times. }
$$

(c) From $I=\frac{\Delta P_{\max }^{2}}{2 \rho v} ; \Delta P_{\max }=\sqrt{2 I \rho v}, \Delta P_{\max }$ is smallest in air, larger in water by $\sqrt{\frac{1000 \cdot 1493}{1.29 \cdot 331}}=59.1$ times, and larger in iron by $\sqrt{\frac{7860 \cdot 5950}{1.29 \cdot 331}}=331$ times.
(d) $\lambda=\frac{v}{f}=\frac{v 2 \pi}{\omega}=\frac{(331 \mathrm{~m} / \mathrm{s}) 2 \pi}{2000 \pi / \mathrm{s}}=0.331 \mathrm{~m}$ in air

$$
\lambda=\frac{1493 \mathrm{~m} / \mathrm{s}}{1000 / \mathrm{s}}=1.49 \mathrm{~m} \text { in water } \quad \lambda=\frac{5950 \mathrm{~m} / \mathrm{s}}{1000 / \mathrm{s}}=5.95 \mathrm{~m} \text { in iron }
$$

$$
s_{\max }=\sqrt{\frac{2 I_{0}}{\rho v \omega_{0}^{2}}}=\sqrt{\frac{2 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}}{\left(1.29 \mathrm{~kg} / \mathrm{m}^{3}\right)(331 \mathrm{~m} / \mathrm{s})(6283 \mathrm{1} / \mathrm{s})^{2}}}=1.09 \times 10^{-8} \mathrm{~m} \text { in air }
$$

$$
s_{\max }=\sqrt{\frac{2 \times 10^{-6}}{1000(1493)}} \frac{1}{6283}=1.84 \times 10^{-10} \mathrm{~m} \text { in water }
$$

$$
s_{\max }=\sqrt{\frac{2 \times 10^{-6}}{7860(5950)}} \frac{1}{6283}=3.29 \times 10^{-11} \mathrm{~m} \text { in iron }
$$

$$
\Delta P_{\max }=\sqrt{2 I \rho v}=\sqrt{2\left(10^{-6} \mathrm{~W} / \mathrm{m}^{2}\right)\left(1.29 \mathrm{~kg} / \mathrm{m}^{3}\right) 331 \mathrm{~m} / \mathrm{s}}=0.0292 \mathrm{~Pa} \text { in air }
$$

$$
\Delta P_{\max }=\sqrt{2 \times 10^{-6}(1000) 1493}=1.73 \mathrm{~Pa} \text { in water }
$$

$$
\Delta P_{\max }=\sqrt{2 \times 10^{-6}(7860)(5950)}=9.67 \mathrm{~Pa} \text { in iron }
$$

P17.37 $\quad f^{\prime}=f \frac{\left(v \pm v_{O}\right)}{\left(v \pm v_{S}\right)}$
(a) $\quad f^{\prime}=320 \frac{(343+40.0)}{(343+20.0)}=338 \mathrm{~Hz}$
(b) $\quad f^{\prime}=510 \frac{(343+20.0)}{(343+40.0)}=483 \mathrm{~Hz}$

