P37.1 $\Delta y_{\text {bright }}=\frac{\lambda L}{d}=\frac{\left(632.8 \times 10^{-9}\right)(5.00)}{2.00 \times 10^{-4}} \mathrm{~m}=1.58 \mathrm{~cm}$
P37.16
(a) $\quad \frac{I}{I_{\max }}=\cos ^{2}\left(\frac{\phi}{2}\right)$
(Equation 37.11)
Therefore,

$$
\phi=2 \cos ^{-1} \sqrt{\frac{I}{I_{\max }}}=2 \cos ^{-1} \sqrt{0.640}=1.29 \mathrm{rad} .
$$

(b) $\delta=\frac{\lambda \phi}{2 \pi}=\frac{(486 \mathrm{~nm})(1.29 \mathrm{rad})}{2 \pi}=99.8 \mathrm{~nm}$

P37.26 Constructive interference occurs where $m=0,1,2,3, \ldots$, for

$$
\begin{array}{ll}
\left(\frac{2 \pi x_{1}}{\lambda}-2 \pi f t+\frac{\pi}{6}\right)-\left(\frac{2 \pi x_{2}}{\lambda}-2 \pi f t+\frac{\pi}{8}\right)=2 \pi m & \frac{2 \pi\left(x_{1}-x_{2}\right)}{\lambda}+\left(\frac{\pi}{6}-\frac{\pi}{8}\right)=2 \pi m \\
\frac{\left(x_{1}-x_{2}\right)}{\lambda}+\frac{1}{12}-\frac{1}{16}=m & x_{1}-x_{2}=\left(m-\frac{1}{48}\right) \lambda \quad m=0,1,2,3, \ldots
\end{array}
$$

P37.40 For total darkness, we want destructive interference for reflected light for both 400 nm and 600 nm . With phase reversal at just one reflecting surface, the condition for destructive interference is

$$
2 n_{\text {air }} t=m \lambda \quad m=0,1,2, \ldots
$$

The least common multiple of these two wavelengths is 1200 nm , so we get no reflected light at $2(1.00) t=3(400 \mathrm{~nm})=2(600 \mathrm{~nm})=1200 \mathrm{~nm}$, so $t=600 \mathrm{~nm}$ at this second dark fringe.

$$
\text { By similar triangles, } \frac{600 \mathrm{~nm}}{x}=\frac{0.0500 \mathrm{~mm}}{10.0 \mathrm{~cm}} \text {, }
$$

or the distance from the contact point is

$$
x=\left(600 \times 10^{-9} \mathrm{~m}\right)\left(\frac{0.100 \mathrm{~m}}{5.00 \times 10^{-5} \mathrm{~m}}\right)=1.20 \mathrm{~mm} \text {. }
$$

P37.52 For destructive interference, the path length must differ by $m \lambda$. We may treat this problem as a double slit experiment if we remember the light undergoes a $\frac{\pi}{2}$-phase shift at the mirror. The second slit is the mirror image of the source, 1.00 cm below the mirror plane. Modifying Equation 37.5,

$$
y_{\text {dark }}=\frac{m \lambda L}{d}=\frac{1\left(5.00 \times 10^{-7} \mathrm{~m}\right)(100 \mathrm{~m})}{\left(2.00 \times 10^{-2} \mathrm{~m}\right)}=2.50 \mathrm{~mm} .
$$

P37.54
wedge,

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { For dark fringes, } \\
2 n t=m \lambda \\
\text { and at the edge of the } \\
t=\frac{84(500 \mathrm{~nm})}{2} . \\
\\
\text { When submerged in water, } \\
2 n t=m \lambda
\end{array} \\
& m=\frac{2(1.33)(42)(500 \mathrm{~nm})}{500 \mathrm{~nm}} \\
& \text { so } \quad m+1=113 \text { dark fringes. }
\end{aligned}
$$

FIG. P37.54

Chapter 38

P38.6
(a) $\sin \theta=\frac{y}{L}=\frac{m \lambda}{a}$

Therefore, for first minimum, $m=1$ and

$$
L=\frac{a y}{m \lambda}=\frac{\left(7.50 \times 10^{-4} \mathrm{~m}\right)\left(8.50 \times 10^{-4} \mathrm{~m}\right)}{(1)\left(587.5 \times 10^{-9} \mathrm{~m}\right)}=1.09 \mathrm{~m} .
$$

(b) $\quad w=2 y_{1}$ yields $y_{1}=0.850 \mathrm{~mm}$

$$
w=2\left(0.850 \times 10^{-3} \mathrm{~m}\right)=1.70 \mathrm{~mm}
$$

P38.24 The principal maxima are defined by

$d \sin \theta=m \lambda$	$m=0,1,2, \ldots$.
For $m=1$,	$\lambda=d \sin \theta$

where θ is the angle between the central $(m=0)$ and the first order ($m=1$) maxima. The value of θ can be determined from the information given about the distance between maxima and the grating-to-screen distance. From the figure,

FIG. P38.24

$$
\begin{aligned}
& \quad \tan \theta=\frac{0.488 \mathrm{~m}}{1.72 \mathrm{~m}}=0.284 \\
& \text { so } \theta=15.8^{\circ} \\
& \text { and } \sin \theta=0.273
\end{aligned}
$$

The distance between grating "slits" equals the reciprocal of the number of grating lines per centimeter

$$
d=\frac{1}{5310 \mathrm{~cm}^{-1}}=1.88 \times 10^{-4} \mathrm{~cm}=1.88 \times 10^{3} \mathrm{~nm}
$$

The wavelength is

$$
\lambda=d \sin \theta=\left(1.88 \times 10^{3} \mathrm{~nm}\right)(0.273)=514 \mathrm{~nm}
$$

P38.36 $2 d \sin \theta=m \lambda \Rightarrow d=\frac{m \lambda}{2 \sin \theta}=\frac{(1)(0.129 \mathrm{~nm})}{2 \sin \left(8.15^{\circ}\right)}=0.455 \mathrm{~nm}$
P38.47 Complete polarization occurs at Brewster's angle

$$
\tan \theta_{p}=1.33 \quad \theta_{p}=53.1^{\circ}
$$

Thus, the Moon is 36.9° above the horizon.

