Chapter 24

P24.4
(a) $\quad A^{\prime}=(10.0 \mathrm{~cm})(30.0 \mathrm{~cm})$

$$
A^{\prime}=300 \mathrm{~cm}^{2}=0.0300 \mathrm{~m}^{2}
$$

$$
\Phi_{E, A^{\prime}}=E A^{\prime} \cos \theta
$$

$$
\Phi_{E, A^{\prime}}=\left(7.80 \times 10^{4}\right)(0.0300) \cos 180^{\circ}
$$

$$
\Phi_{E, A^{\prime}}=-2.34 \mathrm{kN} \cdot \mathrm{~m}^{2} / \mathrm{C}
$$

FIG. P24.4
$A=(30.0 \mathrm{~cm})(w)=(30.0 \mathrm{~cm})\left(\frac{10.0 \mathrm{~cm}}{\cos 60.0^{\circ}}\right)=600 \mathrm{~cm}^{2}=0.0600 \mathrm{~m}^{2}$
$\Phi_{E, A}=\left(7.80 \times 10^{4}\right)(0.0600) \cos 60.0^{\circ}=+2.34 \mathrm{kN} \cdot \mathrm{m}^{2} / \mathrm{C}$
(c) The bottom and the two triangular sides all lie parallel to \mathbf{E}, so $\Phi_{E}=0$ for each of these. Thus,

$$
\Phi_{E, \text { total }}=-2.34 \mathrm{kN} \cdot \mathrm{~m}^{2} / \mathrm{C}+2.34 \mathrm{kN} \cdot \mathrm{~m}^{2} / \mathrm{C}+0+0+0=0 .
$$

P24.8 The flux entering the closed surface equals the flux exiting the surface. The flux entering the left side of the cone is $\Phi_{E}=\int E \cdot d \mathbf{A}=E R h$. This is the same as the flux that exits the right side of the cone. Note that for a uniform field only the cross sectional area matters, not shape.

P24.12 (a) One-half of the total flux created by the charge q goes through the plane. Thus,

$$
\Phi_{E, \text { plane }}=\frac{1}{2} \Phi_{E, \text { total }}=\frac{1}{2}\left(\frac{q}{\epsilon_{0}}\right)=\frac{q}{2 \epsilon_{0}} .
$$

(b) The square looks like an infinite plane to a charge very close to the surface. Hence,

$$
\Phi_{E, \text { square }} \approx \Phi_{E, \text { plane }}=\frac{q}{2 \epsilon}
$$

(c) The plane and the square look the same to the charge.

P24.24
(a) $E=\frac{k_{e} Q r}{a^{3}}=0$
(b) $\quad E=\frac{k_{e} Q r}{a^{3}}=\frac{\left(8.99 \times 10^{9}\right)\left(26.0 \times 10^{-6}\right)(0.100)}{(0.400)^{3}}=365 \mathrm{kN} / \mathrm{C}$
(c)
$E=\frac{k_{e} Q}{r^{2}}=\frac{\left(8.99 \times 10^{9}\right)\left(26.0 \times 10^{-6}\right)}{(0.400)^{2}}=1.46 \mathrm{MN} / \mathrm{C}$
(d) $E=\frac{k_{e} Q}{r^{2}}=\frac{\left(8.99 \times 10^{9}\right)\left(26.0 \times 10^{-6}\right)}{(0.600)^{2}}=649 \mathrm{kN} / \mathrm{C}$

The direction for each electric field is radially outward.

P24.26 (a) $\begin{array}{lc}E=\frac{2 k_{e} \lambda}{r} & 3.60 \times 10^{4}=\frac{2\left(8.99 \times 10^{9}\right)(Q / 2.40)}{0.190} \\ Q=+9.13 \times 10^{-7} \mathrm{C}=+913 \mathrm{nC} & \end{array}$
(b) $\quad \mathrm{E}=0$

P24.41 The fields are equal. The Equation $24.9 E=\frac{\sigma_{\text {conductor }}}{\epsilon_{0}}$ for the field outside the aluminum looks different from Equation $24.8 E=\frac{\sigma_{\text {insulator }}}{2 \epsilon_{0}}$ for the field around glass. But its charge will spread out to cover both sides of the aluminum plate, so the density is $\sigma_{\text {conductor }}=\frac{Q}{2 A}$. The glass carries charge only on area A, with $\sigma_{\text {insulator }}=\frac{Q}{A}$. The two fields are $\frac{Q}{2 A \epsilon_{0}}$ the same in magnitude, and both are perpendicular to the plates, vertically upward if Q is positive.

P24.58 $\oint \mathbf{E} \cdot d \mathbf{A}=E\left(4 \pi r^{2}\right)=\frac{q_{\text {in }}}{\epsilon_{0}}$
(a) $\quad\left(-3.60 \times 10^{3} \mathrm{~N} / \mathrm{C}\right) 4 \pi(0.100 \mathrm{~m})^{2}=\frac{Q}{8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}} \quad(a<r<b)$

$$
Q=-4.00 \times 10^{-9} \mathrm{C}=-4.00 \mathrm{nC}
$$

(b) We take Q^{\prime} to be the net charge on the hollow sphere. Outside c,

$$
\begin{aligned}
& \left(+2.00 \times 10^{2} \mathrm{~N} / \mathrm{C}\right) 4 \pi(0.500 \mathrm{~m})^{2}=\frac{Q+Q^{\prime}}{8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}} \quad(r>c) \\
& Q+Q^{\prime}=+5.56 \times 10^{-9} \mathrm{C}, \text { so } Q^{\prime}=+9.56 \times 10^{-9} \mathrm{C}=+9.56 \mathrm{nC}
\end{aligned}
$$

(c) For $b<r<c: E=0$ and $q_{\text {in }}=Q+Q_{1}=0$ where Q_{1} is the total charge on the inner surface of the hollow sphere. Thus, $Q_{1}=-Q=+4.00 \mathrm{nC}$.
Then, if Q_{2} is the total charge on the outer surface of the hollow sphere,
$Q_{2}=Q^{\prime}-Q_{1}=9.56 \mathrm{nC}-4.0 \mathrm{nC}=+5.56 \mathrm{nC}$.
P24.62 Consider the field due to a single sheet and let E_{+}and E_{-}represent the fields due to the positive and negative sheets. The field at any distance from each sheet has a magnitude given by Equation 24.8:

$$
\left|E_{+}\right|=\left|E_{-}\right|=\frac{\sigma}{2 \epsilon_{\theta}} .
$$

(a) To the left of the positive sheet, E_{+}is directed toward the left and E_{-}toward the right and the net field over this region is $\mathbf{E}=0$.
(b) In the region between the sheets, E_{+}and E_{-}are both directed toward the right and the net field is

$$
\mathbf{E}=\frac{\sigma}{\epsilon_{0}} \text { to the right } .
$$

FIG. P24.62
(c) To the right of the negative sheet, E_{+}and E_{-}are again oppositely directed and $\mathrm{E}=0$.

P25.4 $W=\Delta K=-q \Delta V$
$0-\frac{1}{2}\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(4.20 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)^{2}=-\left(-1.60 \times 10^{-19} \mathrm{C}\right) \Delta V$
From which, $\Delta V=-0.502 \mathrm{~V}$.
P25.6 $\quad E=\frac{|\Delta V|}{d}=\frac{25.0 \times 10^{3} \mathrm{~J} / \mathrm{C}}{1.50 \times 10^{-2} \mathrm{~m}}=1.67 \times 10^{6} \mathrm{~N} / \mathrm{C}=1.67 \mathrm{MN} / \mathrm{C}$

