Chapter 25

P25.8

P25.18

P25.20
(a) $|\Delta V|=E d=\left(5.90 \times 10^{3} \mathrm{~V} / \mathrm{m}\right)(0.0100 \mathrm{~m})=59.0 \mathrm{~V}$
(b) $\quad \frac{1}{2} m v_{f}^{2}=|q \Delta V|: \quad \frac{1}{2}\left(9.11 \times 10^{-31}\right) v_{f}^{2}=\left(1.60 \times 10^{-19}\right)(59.0)$
$v_{f}=4.55 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(a) $E_{x}=\frac{k_{e} q_{1}}{x^{2}}+\frac{k_{e} q_{2}}{(x-2.00)^{2}}=0 \quad$ becomes

$$
E_{x}=k_{e}\left(\frac{+q}{x^{2}}+\frac{-2 q}{(x-2.00)^{2}}\right)=0
$$

$$
\begin{array}{lll}
\text { Dividing by } k_{e}, & 2 q x^{2}=q(x-2.00)^{2} & x^{2}+4.00 x-4.00=0 . \\
\text { Therefore } E=0 & \text { when } & x=\frac{-4.00 \pm \sqrt{16.0+16.0}}{2}=-4.83 \mathrm{~m} .
\end{array}
$$

(Note that the positive root does not correspond to a physically valid situation.)
(b) $\quad V=\frac{k_{e} q_{1}}{x}+\frac{k_{e} q_{2}}{2.00-x}=0 \quad$ or
or

$$
V=k_{e}\left(\frac{+q}{x}-\frac{2 q}{2.00-x}\right)=0
$$

Again solving for x

$$
2 q x=q(2.00-x)
$$

For $0 \leq x \leq 2.00 V=0$
when
$x=0.667 \mathrm{~m}$
and $\frac{q}{|x|}=\frac{-2 q}{2-x \mid}$.
For $x<0$
$x=-2.00 \mathrm{~m}$.
(a) $\quad U=\frac{q Q}{4 \pi \in r}=\frac{\left(5.00 \times 10^{-9} \mathrm{C}\right)\left(-3.00 \times 10^{-9} \mathrm{C}\right)\left(8.99 \times 10^{9} \mathrm{~V} \cdot \mathrm{~m} / \mathrm{C}\right)}{(0.350 \mathrm{~m})}=-3.86 \times 10^{-7} \mathrm{~J}$

The minus sign means it takes $3.86 \times 10^{-7} \mathrm{~J}$ to pull the two charges apart from 35 cm to a much larger separation.
(b) $\quad V=\frac{Q_{1}}{4 \pi \epsilon_{0} r_{1}}+\frac{Q_{2}}{4 \pi \epsilon_{0} r_{2}}$

$$
\begin{aligned}
& =\frac{\left(5.00 \times 10^{-9} \mathrm{C}\right)\left(8.99 \times 10^{9} \mathrm{~V} \cdot \mathrm{~m} / \mathrm{C}\right)}{0.175 \mathrm{~m}}+\frac{\left(-3.00 \times 10^{-9} \mathrm{C}\right)\left(8.99 \times 10^{9} \mathrm{~V} \cdot \mathrm{~m} / \mathrm{C}\right)}{0.175 \mathrm{~m}} \\
V & =103 \mathrm{~V}
\end{aligned}
$$

P25.37 $V=a+b x=10.0 \mathrm{~V}+(-7.00 \mathrm{~V} / \mathrm{m}) x$
(a) $\begin{array}{ll}\text { At } x=0, & V=10.0 \mathrm{~V} \\ \text { At } x=3.00 \mathrm{~m}, & V=-11.0 \mathrm{~V} \\ \text { At } x=6.00 \mathrm{~m}, & V=-32.0 \mathrm{~V}\end{array}$
(b) $\quad E=-\frac{d V}{d x}=-b=-(-7.00 \mathrm{~V} / \mathrm{m})=7.00 \mathrm{~N} / \mathrm{C}$ in the $+x$ direction

P25.42 $\Delta V=V_{2 R}-V_{0}=\frac{k_{e} Q}{\sqrt{R^{2}+(2 R)^{2}}}-\frac{k_{e} Q}{R}=\frac{k_{e} Q}{R}\left(\frac{1}{\sqrt{5}}-1\right)=-0.553 \frac{k_{e} Q}{R}$
(a) Both spheres must be at the same potential according to $\frac{k_{e} q_{1}}{r_{1}}=\frac{k_{e} q_{2}}{r_{2}}$
where also $\quad q_{1}+q_{2}=1.20 \times 10^{-6} \mathrm{C}$.
Then $\quad q_{1}=\frac{q_{2} r_{1}}{r_{2}}$

$$
\frac{q_{2} r_{1}}{r_{2}}+q_{2}=1.20 \times 10^{-6} \mathrm{C}
$$

$$
q_{2}=\frac{1.20 \times 10^{-6} \mathrm{C}}{1+6 \mathrm{~cm} / 2 \mathrm{~cm}}=0.300 \times 10^{-6} \mathrm{C} \text { on the smaller sphere }
$$

$$
q_{1}=1.20 \times 10^{-6} \mathrm{C}-0.300 \times 10^{-6} \mathrm{C}=0.900 \times 10^{-6} \mathrm{C}
$$

$$
V=\frac{k_{e} q_{1}}{r_{1}}=\frac{\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(0.900 \times 10^{-6} \mathrm{C}\right)}{6 \times 10^{-2} \mathrm{~m}}=1.35 \times 10^{5} \mathrm{~V}
$$

(b) Outside the larger sphere,

$$
\mathbf{E}_{1}=\frac{k_{e} q_{1}}{r_{1}^{2}} \hat{\mathbf{r}}=\frac{V_{1}}{r_{1}} \hat{\mathbf{r}}=\frac{1.35 \times 10^{5} \mathrm{~V}}{0.06 \mathrm{~m}} \hat{\mathbf{r}}=2.25 \times 10^{6} \mathrm{~V} / \mathrm{m} \text { away } .
$$

Outside the smaller sphere,

$$
\mathbf{E}_{2}=\frac{1.35 \times 10^{5} \mathrm{~V}}{0.02 \mathrm{~m}} \hat{\mathbf{r}}=6.74 \times 10^{6} \mathrm{~V} / \mathrm{m} \text { away } .
$$

The smaller sphere carries less charge but creates a much stronger electric field than the larger sphere.

P25.52 $V=\frac{k_{e} q}{r}$ and $E=\frac{k_{e} q}{r^{2}}$. Since $E=\frac{V}{r}$,
(b) $\quad r=\frac{V}{E}=\frac{6.00 \times 10^{5} \mathrm{~V}}{3.00 \times 10^{6} \mathrm{~V} / \mathrm{m}}=0.200 \mathrm{~m}$ and
(a) $\quad q=\frac{V r}{k_{e}}=13.3 \mu \mathrm{C}$

Chapter 26

P26.5
(a) $\quad \frac{Q_{1}}{Q_{2}}=\frac{R_{1}}{R_{2}}$

$$
Q_{1}+Q_{2}=\left(1+\frac{R_{1}}{R_{2}}\right) Q_{2}=3.50 Q_{2}=7.00 \mu \mathrm{C}
$$

$$
Q_{2}=2.00 \mu \mathrm{C} \quad Q_{1}=5.00 \mu \mathrm{C}
$$

(b)

P26.29

$$
C_{s}=\left(\frac{1}{5.00}+\frac{1}{7.00}\right)^{-1}=2.92 \mu \mathrm{~F}
$$

$$
C_{p}=2.92+4.00+6.00=12.9 \mu \mathrm{~F}
$$

FIG. P26.29

P26.38 With switch closed, distance $d^{\prime}=0.500 d$ and capacitance $C^{\prime}=\frac{\Theta_{0} A}{d^{\prime}}=\frac{2 \Theta_{\Theta} A}{d}=2 C$.
(a) $\quad Q=C^{\prime}(\Delta V)=2 C(\Delta V)=2\left(2.00 \times 10^{-6} \mathrm{~F}\right)(100 \mathrm{~V})=400 \mu \mathrm{C}$
(b) The force stretching out one spring is

$$
F=\frac{Q^{2}}{2 \epsilon_{0} A}=\frac{4 C^{2}(\Delta V)^{2}}{2 \Theta A}=\frac{2 C^{2}(\Delta V)^{2}}{\left(\Theta_{0} A / d\right) d}=\frac{2 C(\Delta V)^{2}}{d} .
$$

One spring stretches by distance $x=\frac{d}{4}$, so

$$
k=\frac{F}{x}=\frac{2 C(\Delta V)^{2}}{d}\left(\frac{4}{d}\right)=\frac{8 C(\Delta V)^{2}}{d^{2}}=\frac{8\left(2.00 \times 10^{-6} \mathrm{~F}\right)(100 \mathrm{~V})^{2}}{\left(8.00 \times 10^{-3} \mathrm{~m}\right)^{2}}=2.50 \mathrm{kN} / \mathrm{m} .
$$

