Chapter 28

P28.2

P28.6
(a) $\Delta V_{\text {term }}=I R$

$$
\text { becomes } \quad 10.0 \mathrm{~V}=I(5.60 \Omega)
$$

$$
\text { so } \quad I=1.79 \mathrm{~A} \text {. }
$$

(b) $\Delta V_{\text {term }}=\varepsilon-I r$

$$
\begin{array}{ll}
\text { becomes } & 10.0 \mathrm{~V}=\varepsilon-(1.79 \mathrm{~A})(0.200 \Omega) \\
\text { so } & \varepsilon=10.4 \mathrm{~V} .
\end{array}
$$

(a) $\quad R_{p}=\frac{1}{(1 / 7.00 \Omega)+(1 / 10.0 \Omega)}=4.12 \Omega$

$$
R_{s}=R_{1}+R_{2}+R_{3}=4.00+4.12+9.00=17.1 \Omega
$$

(b) $\Delta V=I R$

$$
34.0 \mathrm{~V}=I(17.1 \Omega)
$$

FIG. P28.6
$I=1.99 \mathrm{~A}$ for $4.00 \Omega, 9.00 \Omega$ resistors.
Applying $\Delta V=I R, \quad(1.99 \mathrm{~A})(4.12 \Omega)=8.18 \mathrm{~V}$

$$
8.18 \mathrm{~V}=I(7.00 \Omega)
$$

so $\quad I=1.17 \mathrm{~A}$ for 7.00Ω resistor $8.18 \mathrm{~V}=I(10.0 \Omega)$
so $\quad I=0.818 \mathrm{~A}$ for 10.0Ω resistor.
P28.14 When S is open, R_{1}, R_{2}, R_{3} are in series with the battery. Thus:

$$
\begin{equation*}
R_{1}+R_{2}+R_{3}=\frac{6 \mathrm{~V}}{10^{-3} \mathrm{~A}}=6 \mathrm{k} \Omega \tag{1}
\end{equation*}
$$

When S is closed in position 1 , the parallel combination of the two R_{2} 's is in series with R_{1}, R_{3}, and the battery. Thus:

$$
\begin{equation*}
R_{1}+\frac{1}{2} R_{2}+R_{3}=\frac{6 \mathrm{~V}}{1.2 \times 10^{-3} \mathrm{~A}}=5 \mathrm{k} \Omega \tag{2}
\end{equation*}
$$

When S is closed in position $2, R_{1}$ and R_{2} are in series with the battery. R_{3} is shorted. Thus:

$$
\begin{equation*}
R_{1}+R_{2}=\frac{6 \mathrm{~V}}{2 \times 10^{-3} \mathrm{~A}}=3 \mathrm{k} \Omega \tag{3}
\end{equation*}
$$

From (1) and (3): $R_{3}=3 \mathrm{k} \Omega$.
Subtract (2) from (1): $R_{2}=2 \mathrm{k} \Omega$.
From (3): $R_{1}=1 \mathrm{k} \Omega$.
Answers: $R_{1}=1.00 \mathrm{k} \Omega, R_{2}=2.00 \mathrm{k} \Omega, R_{3}=3.00 \mathrm{k} \Omega$.

P28.20

$$
\begin{array}{ll}
+15.0-(7.00) I_{1}-(2.00)(5.00)=0 & \\
5.00=7.00 I_{1} & \text { so } \\
I_{3}=I_{1}+I_{2}=2.00 \mathrm{~A} & I_{1}=0.714 \mathrm{~A} \\
0.714+I_{2}=2.00 & \text { so } \\
+\varepsilon-2.00(1.29)-5.00(2.00)=0 & I_{2}=1.29 \mathrm{~A} \\
\hline
\end{array}
$$

FIG. P28.20

P28.27 Using Kirchhoff's rules,

$$
\begin{aligned}
& 12.0-(0.0100) I_{1}-(0.0600) I_{3}=0 \\
& 10.0+(1.00) I_{2}-(0.0600) I_{3}=0 \\
& \text { and } \quad I_{1}=I_{2}+I_{3} \\
& \\
& 12.0-(0.0100) I_{2}-(0.0700) I_{3}=0 \\
& \\
& 10.0+(1.00) I_{2}-(0.0600) I_{3}=0
\end{aligned}
$$

FIG. P28.27

Solving simultaneously,

$$
\begin{aligned}
I_{2} & =0.283 \text { A downward } \text { in the dead battery } \\
\text { and } \quad I_{3} & =171 \text { A downward in the starter. }
\end{aligned}
$$

The currents are forward in the live battery and in the starter, relative to normal starting operation. The current is backward in the dead battery, tending to charge it up.

P28.32 (a) $I(t)=-I_{0} e^{-t / R C}$

$$
\begin{aligned}
& I_{0}=\frac{Q}{R C}=\frac{5.10 \times 10^{-6} \mathrm{C}}{(1300 \Omega)\left(2.00 \times 10^{-9} \mathrm{~F}\right)}=1.96 \mathrm{~A} \\
& I(t)=-(1.96 \mathrm{~A}) \exp \left[\frac{-9.00 \times 10^{-6} \mathrm{~s}}{(1300 \Omega)\left(2.00 \times 10^{-9} \mathrm{~F}\right)}\right]=-61.6 \mathrm{~mA}
\end{aligned}
$$

(b) $\quad q(t)=Q e^{-t / R C}=(5.10 \mu \mathrm{C}) \exp \left[\frac{-8.00 \times 10^{-6} \mathrm{~s}}{(1300 \Omega)\left(2.00 \times 10^{-9} \mathrm{~F}\right)}\right]=0.235 \mu \mathrm{C}$
(c) The magnitude of the maximum current is $I_{0}=1.96 \mathrm{~A}$.

P28.36 (a) $\tau=R C=\left(1.50 \times 10^{5} \Omega\right)\left(10.0 \times 10^{-6} \mathrm{~F}\right)=1.50 \mathrm{~s}$
(b) $\quad \tau=\left(1.00 \times 10^{5} \Omega\right)\left(10.0 \times 10^{-6} \mathrm{~F}\right)=1.00 \mathrm{~s}$
(c) The battery carries current

$$
\frac{10.0 \mathrm{~V}}{50.0 \times 10^{3} \Omega}=200 \mu \mathrm{~A}
$$

The $100 \mathrm{k} \Omega$ carries current of magnitude

$$
I=I_{0} e^{-t / R C}=\left(\frac{10.0 \mathrm{~V}}{100 \times 10^{3} \Omega}\right) e^{-t / 1.00 \mathrm{~s}} .
$$

P28.42 Applying Kirchhoff's loop rule, $-I_{g}(75.0 \Omega)+\left(I-I_{g}\right) R_{p}=0$.
Therefore, if $I=1.00 \mathrm{~A}$ when $I_{g}=1.50 \mathrm{~mA}$,

$$
R_{p}=\frac{I_{g}(75.0 \Omega)}{\left(I-I_{g}\right)}=\frac{\left(1.50 \times 10^{-3} \mathrm{~A}\right)(75.0 \Omega)}{1.00 \mathrm{~A}-1.50 \times 10^{-3} \mathrm{~A}}=0.113 \Omega \text {. }
$$

FIG. P28.42

P28.50 $\quad I_{\mathrm{Al}}^{2} R_{\mathrm{Al}}=I_{\mathrm{Cu}}^{2} R_{\mathrm{Cu}}$ so

$$
I_{\mathrm{Al}}=\sqrt{\frac{R_{\mathrm{Cu}}}{R_{\mathrm{Al}}}} I_{\mathrm{Cu}}=\sqrt{\frac{\rho_{\mathrm{Cu}}}{\rho_{\mathrm{Al}}}} I_{\mathrm{Cu}}=\sqrt{\frac{1.70}{2.82}}(20.0)=0.776(20.0)=15.5 \mathrm{~A}
$$

P28.64 The battery supplies energy at a changing rate

Then the total energy put out by the battery is

$$
\int d E=\int_{t=0}^{\infty} \frac{\varepsilon^{2}}{R} \exp \left(-\frac{t}{R C}\right) d t
$$

$\int d E=\frac{\varepsilon^{2}}{R}(-R C) \int_{0}^{\infty} \exp \left(-\frac{t}{R C}\right)\left(-\frac{d t}{R C}\right)=-\left.\varepsilon^{2} C \exp \left(-\frac{t}{R C}\right)\right|_{0} ^{\infty}=-\varepsilon^{2} C[0-1]=\varepsilon^{2} C$.

The power delivered to the resistor is

So the total internal energy appearing in the resistor is

$$
\int d E=\int_{0}^{\infty} \frac{\varepsilon^{2}}{R} \exp \left(-\frac{2 t}{R C}\right) d t
$$

$\int d E=\frac{\varepsilon^{2}}{R}\left(-\frac{R C}{2}\right) \int_{0}^{\infty} \exp \left(-\frac{2 t}{R C}\right)\left(-\frac{2 d t}{R C}\right)=-\left.\frac{\varepsilon^{2} C}{2} \exp \left(-\frac{2 t}{R C}\right)\right|_{0} ^{\infty}=-\frac{\varepsilon^{2} C}{2}[0-1]=\frac{\varepsilon^{2} C}{2}$.
The energy finally stored in the capacitor is $U=\frac{1}{2} C(\Delta V)^{2}=\frac{1}{2} C \varepsilon^{2}$. Thus, energy of the circuit is conserved $\varepsilon^{2} C=\frac{1}{2} \varepsilon^{2} C+\frac{1}{2} \varepsilon^{2} C$ and resistor and capacitor share equally in the energy from the battery.

