Chapter 29

P29.8
Gravitational force:

$$
F_{g}=m g=\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=8.93 \times 10^{-30} \mathrm{~N} \text { down }
$$

Electric force: $\quad F_{e}=q E=\left(-1.60 \times 10^{-19} \mathrm{C}\right)(100 \mathrm{~N} / \mathrm{C}$ down $)=1.60 \times 10^{-17} \mathrm{~N} \mathrm{up}$.
Magnetic force:

$$
\begin{aligned}
& \mathbf{F}_{B}=q \mathbf{v} \times \mathbf{B}=\left(-1.60 \times 10^{-19} \mathrm{C}\right)\left(6.00 \times 10^{6} \mathrm{~m} / \mathrm{s} \hat{\mathbf{E}}\right) \times\left(50.0 \times 10^{-6} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{C} \cdot \mathrm{~m} \hat{\mathbf{N}}\right) . \\
& \mathbf{F}_{B}=-4.80 \times 10^{-17} \mathrm{~N} \text { up }=4.80 \times 10^{-17} \mathrm{~N} \text { down } .
\end{aligned}
$$

P29.10
$q \mathbf{E}=\left(-1.60 \times 10^{-19} \mathrm{C}\right)(20.0 \mathrm{~N} / \mathrm{C}) \hat{\mathbf{k}}=\left(-3.20 \times 10^{-18} \mathrm{~N}\right) \hat{\mathbf{k}}$
$\sum \mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B}=m \mathbf{a}$
$\left(-3.20 \times 10^{-18} \mathrm{~N}\right) \hat{\mathbf{k}}-1.60 \times 10^{-19} \mathrm{C}\left(1.20 \times 10^{4} \mathrm{~m} / \mathrm{s} \hat{\mathbf{i}}\right) \times \mathbf{B}=\left(9.11 \times 10^{-31}\right)\left(2.00 \times 10^{12} \mathrm{~m} / \mathrm{s}^{2}\right) \hat{\mathbf{k}}$
$-\left(3.20 \times 10^{-18} \mathrm{~N}\right) \hat{\mathbf{k}}-\left(1.92 \times 10^{-15} \mathrm{C} \cdot \mathrm{m} / \mathrm{s}\right) \hat{\mathbf{i}} \times \mathbf{B}=\left(1.82 \times 10^{-18} \mathrm{~N}\right) \hat{\mathbf{k}}$
$\left(1.92 \times 10^{-15} \mathrm{C} \cdot \mathrm{m} / \mathrm{s}\right) \hat{\mathbf{i}} \times \mathbf{B}=-\left(5.02 \times 10^{-18} \mathrm{~N}\right) \hat{\mathbf{k}}$
The magnetic field may have any x-component. $B_{z}=0$ and $B_{y}=-2.62 \mathrm{mT}$.
$\mathbf{P 2 9 . 1 4} \quad \frac{\left|\mathbf{F}_{B}\right|}{\ell}=\frac{m g}{\ell}=\frac{I|\ell \times \mathbf{B}|}{\ell}$

$$
I=\frac{m g}{B \ell}=\frac{(0.0400 \mathrm{~kg} / \mathrm{m})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{3.60 \mathrm{~T}}=0.109 \mathrm{~A}
$$

The direction of I in the bar is to the right.

FIG. P29.14

P29.27

$$
\begin{aligned}
& \boldsymbol{\tau}=\boldsymbol{\mu} \times \mathbf{B}, \quad \text { so } \quad \tau=|\boldsymbol{\mu} \times \mathbf{B}|=\mu B \sin \theta=N I A B \sin \theta \\
& \tau_{\max }=N I A B \sin 90.0^{\circ}=1(5.00 \mathrm{~A})\left[\pi(0.0500 \mathrm{~m})^{2}\right]\left(3.00 \times 10^{-3} \mathrm{~T}\right)=118 \mu \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

(b) $\quad U=-\mu \cdot \mathbf{B}$, so $-\mu B \leq U \leq+\mu B$

Since $\mu B=(N I A) B=1(5.00 \mathrm{~A})\left[\pi(0.0500 \mathrm{~m})^{2}\right]\left(3.00 \times 10^{-3} \mathrm{~T}\right)=118 \mu \mathrm{~J}$,
the range of the potential energy is: $-118 \mu \mathrm{~J} \leq U \leq+118 \mu \mathrm{~J}$.

P29.34 (a) We begin with $q v B=\frac{m v^{2}}{R}$
or $\quad q R B=m v$.
But $\quad L=m v R=q R^{2} B$.

Therefore,

$$
R=\sqrt{\frac{L}{q B}}=\sqrt{\frac{4.00 \times 10^{-25} \mathrm{~J} \cdot \mathrm{~s}}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(1.00 \times 10^{-3} \mathrm{~T}\right)}}=0.0500 \mathrm{~m}=5.00 \mathrm{~cm} \text {. }
$$

(b) Thus,
$v=\frac{L}{m R}=\frac{4.00 \times 10^{-25} \mathrm{~J} \cdot \mathrm{~s}}{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)(0.0500 \mathrm{~m})}=8.78 \times 10^{6} \mathrm{~m} / \mathrm{s}$.

P29.41

$$
\begin{aligned}
& K=\frac{1}{2} m v^{2}=q(\Delta V) \quad \text { so } \quad v=\sqrt{\frac{2 q(\Delta V)}{m}} \\
& \mathbf{F}_{B}\left|=|q \mathbf{v} \times \mathbf{B}|=\frac{m v^{2}}{r} \quad r=\frac{m v}{q B}=\frac{m}{q} \sqrt{\frac{2 q(\Delta V) / m}{B}}=\frac{1}{B} \sqrt{\frac{2 m(\Delta V)}{q}}\right.
\end{aligned}
$$

(a) $\quad r_{238}=\sqrt{\frac{2\left(238 \times 1.66 \times 10^{-27}\right) 2000}{1.60 \times 10^{-19}}}\left(\frac{1}{1.20}\right)=8.28 \times 10^{-2} \mathrm{~m}=8.28 \mathrm{~cm}$
(b) $\quad r_{235}=8.23 \mathrm{~cm}$
$\frac{r_{238}}{r_{235}}=\sqrt{\frac{m_{238}}{m_{235}}}=\sqrt{\frac{238.05}{235.04}}=1.0064$
The ratios of the orbit radius for different ions are independent of ΔV and B.
P29.48
(a) $\quad R_{\mathrm{H}} \equiv \frac{1}{n q} \quad$ so $\quad n=\frac{1}{q R_{\mathrm{H}}}=\frac{1}{\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(0.840 \times 10^{-10} \mathrm{~m}^{3} / \mathrm{C}\right)}=7.44 \times 10^{28} \mathrm{~m}^{-3}$
(b) $\Delta V_{\mathrm{H}}=\frac{I B}{n q t}$
$B=\frac{n q t\left(\Delta V_{\mathrm{H}}\right)}{I}=\frac{\left(7.44 \times 10^{28} \mathrm{~m}^{-3}\right)\left(1.60 \times 10^{-19} \mathrm{C}\right)\left(0.200 \times 10^{-3} \mathrm{~m}\right)\left(15.0 \times 10^{-6} \mathrm{~V}\right)}{20.0 \mathrm{~A}}=1.79 \mathrm{~T}$

P29.55 The magnetic force on each proton, $\mathbf{F}_{B}=q \mathbf{v} \times \mathbf{B}=q v B \sin 90^{\circ}$ downward perpendicular to velocity, causes centripetal acceleration, guiding it into a circular path of radius r, with

$$
\begin{array}{ll}
& q v B=\frac{m v^{2}}{r} \\
\text { and } & r=\frac{m v}{q B} .
\end{array}
$$

We compute this radius by first finding the proton's speed:

FIG. P29.55

$$
\begin{aligned}
& K=\frac{1}{2} m v^{2} \\
& v=\sqrt{\frac{2 K}{m}}=\sqrt{\frac{2\left(5.00 \times 10^{6} \mathrm{eV}\right)\left(1.60 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{1.67 \times 10^{-27} \mathrm{~kg}}}=3.10 \times 10^{7} \mathrm{~m} / \mathrm{s} . \\
& \text { Now, } \quad r=\frac{m v}{q B}=\frac{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(3.10 \times 10^{7} \mathrm{~m} / \mathrm{s}\right)}{\left(1.60 \times 10^{-19} \mathrm{C}\right)(0.0500 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{C} \cdot \mathrm{~m})}=6.46 \mathrm{~m} .
\end{aligned}
$$

(b) From the figure, observe that

$$
\begin{aligned}
& \sin \alpha=\frac{1.00 \mathrm{~m}}{r}=\frac{1 \mathrm{~m}}{6.46 \mathrm{~m}} \\
& \alpha=8.90^{\circ}
\end{aligned}
$$

(a) The magnitude of the proton momentum stays constant, and its final y component is

$$
-\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(3.10 \times 10^{7} \mathrm{~m} / \mathrm{s}\right) \sin 8.90^{\circ}=-8.00 \times 10^{-21} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

Chapter 30

P30.1 $B=\frac{\mu_{0} I}{2 R}=\frac{\mu_{0} q(v / 2 \pi R)}{2 R}=12.5 \mathrm{~T}$
P30.20 The separation between the wires is $a=2(6.00 \mathrm{~cm}) \sin 8.00^{\circ}=1.67 \mathrm{~cm}$.
(a) Because the wires repel, the currents are in opposite directions.
(b) Because the magnetic force acts horizontally,

$$
\begin{aligned}
& \frac{F_{B}}{F_{g}}=\frac{\mu_{0} I^{2} \ell}{2 \pi a m g}=\tan 8.00^{\circ} \\
& I^{2}=\frac{m g 2 \pi a}{\ell \mu_{0}} \tan 8.00^{\circ} \text { so } I=67.8 \mathrm{~A} .
\end{aligned}
$$

FIG. P30.20

