Chapter 32

P32.4 $L=\frac{N \Phi_{B}}{I} \rightarrow \Phi_{B}=\frac{L I}{N}=240 \mathrm{nT} \cdot \mathrm{m}^{2}$ through each turn
P32.6 From $|\varepsilon|=L\left(\frac{\Delta I}{\Delta t}\right)$, we have $L=\frac{\varepsilon}{(\Delta I / \Delta t)}=\frac{24.0 \times 10^{-3} \mathrm{~V}}{10.0 \mathrm{~A} / \mathrm{s}}=2.40 \times 10^{-3} \mathrm{H}$.
From $L=\frac{N \Phi_{B}}{I}$, we have $\quad \Phi_{B}=\frac{L I}{N}=\frac{\left(2.40 \times 10^{-3} \mathrm{H}\right)(4.00 \mathrm{~A})}{500}=19.2 \mu \mathrm{~T} \cdot \mathrm{~m}^{2}$.

P32.22

$$
\begin{aligned}
& I= I_{\max }\left(1-e^{-t \tau \tau}\right): 0.980=1-e^{-3.00 \times 10^{-3} / \tau} \\
& 0.0200=e^{-3.00 \times 10^{-3} / \tau} \\
& \tau=-\frac{3.00 \times 10^{-3}}{\ln (0.0200)}=7.67 \times 10^{-4} \mathrm{~s} \\
& \tau=\frac{L}{R}, \text { so } L=\tau R=\left(7.67 \times 10^{-4}\right)(10.0)=7.67 \mathrm{mH}
\end{aligned}
$$

FIG. P32.22

P32.36 From Equation 32.7, $\quad I=\frac{\varepsilon}{R}\left(1-e^{-R+L}\right)$.
(a) The maximum current, after a long time t, is $I=\frac{\varepsilon}{R}=2.00 \mathrm{~A}$. At that time, the inductor is fully energized and
(b)
(c)
(d) $\quad U=\frac{L I^{2}}{2}=\frac{(10.0 \mathrm{H})(2.00 \mathrm{~A})^{2}}{2}=20.0 \mathrm{~J}$

P32.38 The total magnetic energy is the volume integral of the energy density, $\quad u=\frac{B^{2}}{2 \mu_{0}}$.
Because B changes with position, u is not constant. For $B=B_{0}\left(\frac{R}{r}\right)^{2}, \quad u=\left(\frac{B_{0}^{2}}{2 \mu_{0}}\right)\left(\frac{R}{r}\right)^{4}$.
Next, we set up an expression for the magnetic energy in a spherical shell of radius r and thickness $d r$. Such a shell has a volume $4 \pi r^{2} d r$, so the energy stored in it is

$$
d U=u\left(4 \pi r^{2} d r\right)=\left(\frac{2 \pi B_{0}^{2} R^{4}}{\mu_{0}}\right) \frac{d r}{r^{2}} .
$$

We integrate this expression for $r=R$ to $r=\infty$ to obtain the total magnetic energy outside the sphere. This gives

$$
U=\frac{2 \pi B_{0}^{2} R^{3}}{\mu_{0}}=\frac{2 \pi\left(5.00 \times 10^{-5} \mathrm{~T}\right)^{2}\left(6.00 \times 10^{6} \mathrm{~m}\right)^{3}}{\left(1.26 \times 10^{-6} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)}=2.70 \times 10^{18} \mathrm{~J} .
$$

P32.39 $I_{1}(t)=I_{\max } e^{-\alpha t} \sin \omega t$ with $I_{\max }=5.00 \mathrm{~A}, \alpha=0.0250 \mathrm{~s}^{-1}$, and $\omega=377 \mathrm{rad} / \mathrm{s}$

$$
\frac{d I_{1}}{d t}=I_{\max } e^{-\alpha t}(-\alpha \sin \omega t+\omega \cos \omega t)
$$

$$
\begin{aligned}
& \text { At } t=0.800 \mathrm{~s}, \\
& \frac{d I_{1}}{d t}=(5.00 \mathrm{~A} / \mathrm{s}) e^{-0.0200}[-(0.0250) \sin (0.800(377))+377 \cos (0.800(377))] \\
& \qquad \frac{d I_{1}}{d t}=1.85 \times 10^{3} \mathrm{~A} / \mathrm{s} . \\
& \text { Thus, } \varepsilon_{2}=-M \frac{d I_{1}}{d t}: \quad M=\frac{-\varepsilon_{2}}{d I_{1} / d t}=\frac{+3.20 \mathrm{~V}}{1.85 \times 10^{3} \mathrm{~A} / \mathrm{s}}=1.73 \mathrm{mH} .
\end{aligned}
$$

P32.51
(a) $f=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{(0.0820 \mathrm{H})\left(17.0 \times 10^{-6} \mathrm{~F}\right)}}=135 \mathrm{~Hz}$
(b) $\quad Q=Q_{\max } \cos \omega t=(180 \mu \mathrm{C}) \cos (847 \times 0.00100)=119 \mu \mathrm{C}$
(c) $\quad I=\frac{d Q}{d t}=-\omega Q_{\max } \sin \omega t=-(847)(180) \sin (0.847)=-114 \mathrm{~mA}$

P32.54
(a) $\quad \omega_{d}=\sqrt{\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}}=\sqrt{\frac{1}{\left(2.20 \times 10^{-3}\right)\left(1.80 \times 10^{-6}\right)}-\left(\frac{7.60}{2\left(2.20 \times 10^{-3}\right)}\right)^{2}}=1.58 \times 10^{4} \mathrm{rad} / \mathrm{s}$

Therefore, $\quad f_{d}=\frac{\omega_{d}}{2 \pi}=2.51 \mathrm{kHz}$.
(b) $\quad R_{c}=\sqrt{\frac{4 L}{C}}=69.9 \Omega$

