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Dressed photon-orbital states in a quantum dot: Intervalley spin resonance
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The valley degree of freedom is intrinsic to spin qubits in Si/SiGe quantum dots. It has been viewed alternately
as a hazard, especially when the lowest valley-orbit splitting is small compared to the thermal energy, or as an asset,
most prominently in proposals to use the valley degree of freedom itself as a qubit. Here we present experiments
in which microwave electric field driving induces transitions between both valley-orbit and spin states. We show
that this system is highly nonlinear and can be understood through the use of dressed photon-orbital states,
enabling a unified understanding of the six microwave resonance lines we observe. Some of these resonances are
intervalley spin transitions that arise from a nonadiabatic process in which both the valley and the spin degree
of freedom are excited simultaneously. For these transitions, involving a change in valley-orbit state, we find a
tenfold increase in sensitivity to electric fields and electrical noise compared to pure spin transitions, strongly
reducing the phase coherence when changes in valley-orbit index are incurred. In contrast to this nonadiabatic
transition, the pure spin transitions, whether arising from harmonic or subharmonic generation, are shown to be
adiabatic in the orbital sector. The nonlinearity of the system is most strikingly manifest in the observation of
a dynamical anticrossing between a spin-flip, intervalley transition and a three-photon transition enabled by the
strong nonlinearity we find in this seemly simple system.

DOI: 10.1103/PhysRevB.95.165429

I. INTRODUCTION

A spin-1/2 particle is the canonical two-level quantum sys-
tem. Its energy level structure is extremely simple, consisting
of just the spin-up and spin-down levels. Therefore, when
performing spectroscopy on an elementary spin-1/2 particle
such as an electron spin, only a single resonance is expected
corresponding to the energy separation between the two levels.

Recent measurements have shown that the spectroscopic
response of a single electron spin in a quantum dot can be
much more complex than this simple picture suggests. This is
particularly true when using electric-dipole spin resonance,
where an oscillating electric field couples to the spin via
spin-orbit coupling [1]. First, due to nonlinearities in the
response to oscillating driving fields, subharmonics can be
observed [2–7], and the nonlinear response can even be
exploited for driving coherent spin rotations [8]. Second,
due to spin-orbit coupling, the exact electron spin resonance
frequency in a given magnetic field depends on the orbital the
electron occupies [9]. In silicon or germanium quantum dots,
the conduction band valley is an additional degree of freedom
[10–14], and the electron spin resonance frequency should
depend on the valley state as well [14–19]. As a result, when
valley or orbital energy splittings are comparable to or smaller
than the thermal energy, thermal occupation of the respective
levels leads to the observation of multiple closely spaced spin
resonance frequencies [17].

The picture becomes even richer when considering tran-
sitions in which not only the spin state but also the orbital

quantum number changes. Such phenomena are common in
optically active dots [20] but have been observed also in
electrostatically defined (double) quantum dots in the form
of relaxation from spin triplet to spin singlet states [21,22]
and spin-flip photon-assisted tunneling [23,24]. However, that
work is all in semiconductor quantum dots with no valley de-
gree of freedom, and the degree to which valleys—often treated
as weakly coupled to each other and orbital states—couple to
each other to enable microwave-driven transitions that change
spin has not been explored. Furthermore, the investigation of
resonant transitions involving the valley degree of freedom
is very important in the context of the new qubit architecture
recently proposed for Si quantum dots [25], based on the valley
degree of freedom to encode and process quantum information.

Here, we report transitions where both the spin and valley-
orbit state flip in a Si/SiGe quantum dot. We demonstrate
that we can Stark shift the transitions, and we compare the
sensitivity to electric fields to the case of pure spin transitions,
including the impact on phase coherence. We find that the
valley-orbit coupling strongly affects the coherence properties
of the intervalley spin resonances. We show that a theory
incorporating a driven four-level system comprised of two
valley-orbit and two spin states subject to strong ac driving
provides a consistent description of these transitions, as well
as all the previously reported transitions for this system. This
theory also explains the observation of a dynamical level
repulsion, which can be understood effectively and compactly
using a dressed-state formalism.
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FIG. 1. (a) Multiple resonance frequencies as a function of the external magnetic field, observed for a single electron spin confined in
a gate-defined Si/SiGe quantum dot, driven by low-power microwave excitation applied to one of the quantum dot gates. Resonances (1)
and (2) are indistinguishable on this scale, as are resonances (3) and (4). On the horizontal axis, we plot Btot =

√
(Bx

ext + B‖)2 + B2
⊥, with

B‖ ∼ −120 mT and B⊥ ∼ 50 mT the estimated components of the stray magnetic field from the micromagnet [magnetized, in this measurement,
along the x direction (see Fig. S3 [26])]. (b) Zoom-in of the region indicated by a red box in panel (a). (c) Schematic energy level diagram
of a generic two-level quantum system described by Eq. (1), as a function of detuning ε and with a harmonic driving of amplitude ε1 around
the central value ε0 with energy eigenvalues E± and energy splitting E01 = E+ − E−. (d) The four energy levels considered in this work as a
function of Btot, in the absence of photonic dressing, comprised of two valley-orbit states (|V1,2〉) and two spin states (|↓,↑〉). EV S represents
the valley-orbit energy splitting. The vertical arrows labeled 1–6 correspond to six processes observed in our simulations and to excitations
observed in the experiment, with the same labeling scheme as panels (a) and (b). (1) and (2) correspond to single-photon spin flips. (3) and (4)
correspond to two-photon spin flips. (5) corresponds to a combined spin flip, valley-orbit excitation, and single-photon absorption. (6) is also
a combined spin-flip, valley-orbit excitation, between different states than (5), and is a three-photon process. (7) is a nonadiabatic valley-orbit
excitation; it is observed in simulations but not in the experiments, because EV S ∼ kBTel, and therefore readout is ineffective.

II. DEVICE AND SPECTROSCOPIC MEASUREMENTS

The device used for this experiment has been described
in Ref. [17] (see Fig. S3 [26]). It is based on an undoped
Si/SiGe heterostructure with two layers of electrostatic gates.
Two accumulation gates are used to induce a two-dimensional
electron gas (2DEG) in a 12-nm-wide Si quantum well 37 nm
below the surface and a set of depletion gates is used to form
a single quantum dot in the 2DEG, and a charge sensor next to
this dot. The dot is tuned so it is occupied by just one electron.
Two micromagnets placed on top of the accumulation gates
produce a local magnetic field gradient. The sample is attached
to the mixing chamber of a dilution refrigerator with base
temperature ∼25 mK and an electron temperature estimated
from transport measurements of ∼150 mK. For the present gate
voltage configuration, the valley splitting, EV S , is comparable
to the thermal energy, kBTel.

Microwave excitation applied to one of the gates oscillates
the electron wave function back and forth in the dot, roughly

along the x axis (Fig. S3 [26]). Because of the local magnetic
field gradient dB⊥/dx ∼0.3 mT/nm [17], where B⊥ is the
component of the micromagnet field gradient perpendicular
to the static magnetic field Bext, the electron is then subject
to an oscillating magnetic field [27,28] and electron spin
transitions can be induced when the excitation is resonant with
the spin splitting. The spin-up probability P↑ in response to
the microwave excitation is measured by repeated single-shot
cycles (see Sec. III A of the Supplemental Material [26] for
details). The initialization and read-out procedures require a
Zeeman splitting exceeding kBTel, which here restricts us to
working at Btot > 450 mT.

When varying the applied microwave frequency and exter-
nal magnetic field, we observe six distinct resonance peaks
[see Fig. 1(a)] [29]. The two resonances labeled (1) and (2),
not resolved on this scale, are two intravalley spin resonances,
one for each of the two lowest-lying valley states that are
thermally occupied [17]. They exhibit a T ∗

2 ∼ 1 μs and Rabi
frequencies of order MHz. The two resonances labeled (3) and
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(4), similarly not resolved, arise from second harmonic driving
of the two intravalley spin flip transitions. These transitions too
can be driven coherently, with Rabi frequencies comparable to
those for the fundamental harmonic, as we reported in Ref. [8].

We focus here on the resonances labeled (5) and (6) in
Fig. 1, which have not been discussed before. The frequency
of resonance (5), f

(5)
0 , is ∼7 GHz lower than the fundamental

intravalley spin resonance frequencies, f
(1)
0 and f

(2)
0 . From

the magnetic field dependence measured above 500 mT, we
extract a g factor of about 1.971 ± 0.002, close to but different
from the g factors for resonances (1) and (2) (1.99 [17]). The
line width (Fig. 3(a) inset and Fig. S4 [26]) is almost ten
times larger than that for the intravalley resonances, giving a
correspondingly shorter T ∗

2 of around 100 ns. Around 500 mT,
resonance (5) changes in a way reminiscent of level repulsions
and transitions into resonance (6) [see Fig. 1(b)]. Without the
change in slope, resonance (5) would have crossed resonances
(3) and (4); however, the latter do not show any sign of level
repulsion and continue their linear dependence on magnetic
field.

We interpret these puzzling observations starting with
Fig. 1(d). Two sets of Zeeman split levels are seen, separated
by the energy of the first excited valley-orbit state. The
green (1) [(2)] and two blue (3) [(4)] arrows show driving
of spin transitions via the fundamental and second harmonic,
respectively, for the valley-orbit ground [excited] state. We
identify resonance (5) with the transition indicated with the
red arrow in which both spin and valley(-orbit) flip. It has
the same field dependence as resonance (1), but (above
500 mT) it is offset from resonance (1) by a fixed amount,
which as we can see from Fig. 1(d), is a measure of the
valley-orbit splitting, EV S . Resonance (6) is a three photon
process in which both spin and valley-orbit states flip. As we
discuss below, hybridization between (5) and (6) is possible at
magnetic fields Btot = 2EV S

gμB
, for which the photons shown by

the corresponding arrows in Fig. 1(d) have the same energy.

III. MODEL

We now introduce a simple model Hamiltonian that can
be used to understand the observed spectroscopic response.
This model explains the presence of both the first and second
harmonic driven spin resonance as well as the observed
intervalley spin resonance. We show that resonances such as
those observed in Figs. 1(a) and 1(b) are generic features of
a strongly driven four-level system composed of two orbital
levels and two spin levels in which there is a coupling between
the orbital levels, such as a tunnel coupling. For our case,
it is natural to associate the orbital levels with two different
valley-orbit states (see Sec. I of the Supplemental Material [26]
for details).

Our analysis builds upon the theory proposed by
Rashba [30]. When a spin qubit is driven at a frequency ω,
it responds at one or more frequencies �, which may be the
same as ω, but may also be different [see Fig. 2(a)]. Spin
resonance is observed if (i) the spin is flipped [31], and (ii)
h̄� = EZ , where EZ = gμBBtot is the Zeeman splitting, g is
the Landé g factor in silicon, μB is the Bohr magneton, and
Btot is the total magnetic field. In electric dipole spin resonance

(EDSR), the spin flip requires a physical mechanism for the
electric field to couple to the spin, such as spin-orbit coupling
[27]. In our experiment, an effective spin-orbit coupling due
to the strong magnetic field gradient from the micromagnet is
the mechanism responsible for spin flips [17]. Hence, we can
say that EDSR and its associated spin dynamics provide a tool
for observing the mapping ω → �. However, as discussed in
Ref. [30], EDSR does not determine the mapping; determining
the resonant frequencies � requires including the essential
nonlinearity in the system, which in this case resides in the
orbital sector of the qubit Hamiltonian. We therefore focus
on the dynamics of the orbital sector of the Hamiltonian; the
mechanism for spin flips is included perturbatively after the
charge dynamics have been characterized.

The exact orbital Hamiltonian is difficult to write down
from first principles, since it likely involves both orbital and
valley components [17] and depends on the atomistic details of
the quantum well interface [10–12]. Nonetheless, the features
of the resonances in Fig. 1 emerge quite naturally using a
model with one low-lying orbital excited state. Referring to
Fig. 1(c), in this model, the Hamiltonian for the orbital sector
is described by a simple two-state Hamiltonian, which we write
as

H = 1
2 (εσz + �σx). (1)

Here, ε is a detuning parameter, � is the tunnel coupling
between the generic basis states labeled |L〉 and |R〉, and σx

and σz are Pauli matrices. We consider a classical ac drive,
applied to the detuning parameter:

ε(t) = ε0 + ε1 sin(ωt). (2)

If the quantum dot confinement were purely parabolic, then
changing the detuning would not affect the energy splitting
between the eigenstates. However, any nonparabolicity in the
dot, which is unavoidable in real devices, will cause the energy
splitting to depend on the detuning and will yield a nonlinear
response to the driving term, Eq. (2). In our Hamiltonian, this
effect enters via the tunnel coupling �, which causes the qubit
frequency to depend on ε(t).

Our goal is to determine the response of the two-level
system to this ε(t). We solve the time-dependent Schrödinger
equation with the initial state ψ(t = 0) = |0〉 representing
the adiabatic ground state of Eqs. (1) and (2) when t = 0,
corresponding to ε1 = 0. We assume that the basis states are
coupled by the applied electric field because they have different
spatial charge distributions and study the time evolution of the
instantaneous dipole moment of the ground state |0〉, defined
as

p(t) = eL

2
[|〈ψ(t)|L〉|2 − |〈ψ(t)|R〉|2 ]. (3)

Here, L is the distance between the charge in states |L〉 and
|R〉 [32].

Rashba has studied Hamiltonian (1) perturbatively in the
regime of weak driving and high excitation frequency [30].
In Secs. I and II of the Supplemental Material [26], we
present a detailed exposition of our extensions of these
investigations into the strong driving regime relevant to
resonances (5) and (6). We find that driving this transition
involves nonadiabatic processes [33–35] whereby the orbital
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FIG. 2. Theoretical calculations of resonances in an ac-driven qubit with a low-lying orbital state induced by adiabatic and nonadiabatic
processes. (a) Schematic illustrating that an excitation at driving frequency ω leads to several adiabatic (nonadiabatic) response frequencies of
the electron dipole moment, p(�) = FFT [p(t)], listed in green (blue). The time-dependent electron dipole moment in turn produces spin flips
due to the magnetic field gradient when h̄� matches the Zeeman splitting. (b) Simulated resonance spectrum of the ac-driven qubit model of
Eqs. (1) and (2), setting h̄ = 1. As described in the main text, the dynamics of the dipole moment p(t), defined in Eq. (3), are solved in the time
domain for the driving frequency ω, then Fourier transformed to obtain the response frequency �. Here we use ε0 = ε1 = � = 1. The dashed
lines indicate the positions of the fundamental resonance and its first two harmonics (top to bottom). The lower inset shows the relation between
the energy levels and the driving term. The upper inset shows the same results as the main panel, with the experimentally relevant resonances
highlighted (compare to Fig. 1). (c) Resonance spectrum corresponding to the parameters ε0 = � = 1 and ε1 = 0.5. Here, the shaded region
was normalized separately from the rest of the figure. The resonance features labeled 1–10 are discussed in the main text (see also Secs. I C
and II B of Supplemental Material [26]). (d) A blowup of the region shown in the center box of panel (b), using the parameters � = ε0 = 1
and ε1 = 0.11, which gives good agreement with the level repulsion observed in the experiments shown in Figs. 1(a) and 1(b).

state gets excited, in contrast to the subharmonics reported
in Ref. [8], which as we show here involve only adiabatic
processes in the charge sector.

Here, we present the results of numerical simulations in this
regime and show that the results are consistent with the main
features observed experimentally. The dynamical simulations
are performed by setting h̄ = 1 and solving the Schrödinger
equation i∂|ψ〉/∂t = H |ψ〉 for Eqs. (1) and (2) and computing
p(t) as defined in Eq. (3) for a fixed driving frequency ω [36].
The resulting p(t) is Fourier transformed, yielding a p(�)
whose peaks reflect the resonant response. Finally, we smooth
p(�) by convolving it with a Gaussian of width 0.025 (in
order to take into account noise, which is averaged in the
experiment). Because of the spin-orbit coupling (the position-
dependent transverse magnetic field from the micromagnet),
spin and orbital states hybridize, and peaks in p(�) correspond
to frequencies at which an ac magnetic field is generated that is
resonant with the Zeeman frequency, EZ/h̄ = �, so spin flips
will occur. The experiment measures the probability of a spin
flip as a function of magnetic field; via the EDSR mechanism,
resonances in this probability therefore occur when the peak
locations in p(�) satisfy gμBBtot = h̄�.

Figures 2(b) and 2(c) show the results of our simulations for
p(�) as a function of both driving frequency ω and response

frequency � over a range of parameters analogous to those
shown in Fig. 1. We discuss these transitions one by one (see
also Sec. I C of the Supplemental Material [26]). When driving
at ω leads to a response in the dipole p(t) at a frequency �

such that ω = � = EZ , a pure spin transition is induced. This
corresponds to the fundamental resonances (1),(2). The first
subharmonic response occurs when ω = �/2 = EZ/2, which
is the case of resonances (3),(4). For the second subharmonic,
resonances (9),(10), we have ω = �/3 = EZ/3. All the
transitions discussed so far are adiabatic in the orbital sector.
However, transitions that are nonadiabatic in the orbital sector
are also allowed, i.e., transitions where an orbital excitation
is involved (in the experiment, this would correspond to a
valley excitation, the valley being the lowest energy orbital-
like excitation). First, � = E01, a pure orbital excitation is
induced (a pure valley transition with excitation energy EV S

in the experiment), which is magnetic field independent and
occurs over a wide range of ω. This is transition (7) in
Figs. 2(c). Next, resonance (5) runs parallel to the fundamental
resonance, with ω = � − E01 and furthermore � = EZ , so
that ω = EZ − E01. Thus driving at frequency ω induces a
spin excitation and an orbital (valley) de-excitation, see the
double red arrow in Fig. 1(d). We call this process intervalley
spin resonance. Finally, resonance (6), which runs parallel to
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FIG. 3. Sensitivity of intravalley and intervalley spin transitions to electric fields. (a) Measured resonance frequency for the intervalley
(f (5)

0 at B
y
ext = 792 mT, blue data and axes) and intravalley (f (1)

0 at B
y
ext = 550 mT, red data and axes) spin transition, as a function of gate

voltage V2. Inset: low-power continuous wave response of the intervalley spin transition, with T ∗
2 estimated from the line width (see also Fig. S4

[26]). (b) Schematic representation of an atomic step in a Si/SiGe quantum well and of a quantum dot parabolic confinement potential (not
to scale) laterally offset from the step. (c) Valley-orbit energy splitting found by a 2D tight-binding calculation using the geometry shown in
panel (b), a 13-nm-wide quantum well barrier of 160 meV (corresponding to 30% Ge), a parabolic confinement potential for the dot of size√

〈x2〉 = 21.1 nm (corresponding to an orbital energy splitting of h̄ω = 0.45 meV), and an electric field of 1.5 × 106 V/m (the experimental
electric field is not well known). In the plots, a positive step offset corresponds to a step on the right-hand side of the dot. (d) Scatter plot
showing two quantities measured every 400 s. The x axis shows the average rate 	IN with which an electron tunnels into the quantum dot
during qubit initialization (in orange in the inset); on the y axis is the frequency of resonance (5) relative to its value averaged over the entire
measurement (see also Fig. S6 [26]). The continuous line represents a linear fit to the data through the point (0,0). The dashed lines represent
the 95% confidence interval. The distribution of the points in the scatter plot indicates that the two quantities are correlated. Bx

ext = 590 mT,
B

y
ext = 598.2 mT, �f

(5)
0 = f

(5)
0 − 15.6894 GHz, �	IN = 	IN − 1.0762 kHz.

(9),(10), is characterized by ω = �/3 + E01/3, again with
� = EZ . Here, driving at ω leads to a spin excitation and
an orbital excitation. The upper inset of Fig. 2(b) highlights
the particular resonances in the main figure that should
be compared to the experimental data shown in Figs. 1(a)
and 1(b).

An interesting feature of the resonances, observed both in
the experiments and theory [Figs. 2(b)–2(d)], is the apparent
‘level repulsion’ between resonance lines (5) and (6) that
takes place near Btot = 480 mT. This magnetic field value
is much higher than EV S/gμB ∼ Btot = 250 mT, where the
anticrossing between the states |v1, ↓〉 and |v2, ↑〉 is expected
to occur [15] [see the red dashed line in Fig. 1(d)], but which
is outside our measurement window, see above. Instead the
observed ‘level repulsion’ has a purely dynamical origin, as
demonstrated by the fact that the anticrossing is suppressed
in Fig. 2(c), where the simulation parameters are identical to
Fig. 2(b), except for a smaller driving amplitude ε1.

In Sec. II of the Supplemental Material [26], we develop
a dressed-state theory to describe these strong-driving effects.
In this formalism, the quasiclassical driving field of Eq. (2) is
replaced by a fully quantum description of the photon field and
its coupling to the (valley)-orbital Hamiltonian of the quantum
dot. The resulting dressed eigenstates describe the hybridized
photon-orbital levels, and more generally, the hybridization
of orbital, photon, and spin states. In this way, resonances
(1) and (2) in Fig. 2(c) correspond to single-photon spin
flips, while resonances (3) and (4) correspond to two-photon

spin flips. Resonance (5) involves both a spin flip and a
valley-orbit excitation and is parallel to resonance (1),(2),
indicating that it is a single-photon process. Resonance (6) is
parallel to (9),(10), indicating that it is a three-photon process.
The physical mechanisms of the resonances are also indicated
in Fig. 1(d).

In principle, coupling occurs between all of the dressed
states due to the effective spin-orbit coupling in our EDSR
experiment. In practice however, the orbital-Rabi frequency is
two orders of magnitude larger than the spin-Rabi frequency,
so mode hybridization is only observed between resonance
(5) and (6), resulting in the level repulsion. The magnitude
of this repulsion provides a convenient way to determine the
orbital-Rabi frequency, which cannot be measured directly
due to the fast dephasing of the excited valley-orbit state (see
Sec. IV). In Sec. II of the Supplemental Material [26], we
estimate this Rabi frequency to be about 0.2 GHz.

IV. COHERENCE OF THE INTERVALLEY
SPIN TRANSITION

We now examine the possible origin of the ten times
larger line width of resonance (5) compared to that of the
pure spin-flip resonances (1) and (2). Given the partial valley
nature of transition (5) and the strong valley-orbit coupling
that is typical of Si/SiGe quantum dots [15,16,37], a plausible
candidate decoherence mechanism for this transition is electric
field noise.
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FIG. 4. (a) Measured spin-up probability as a function of microwave power at B
y
ext = 846 mT for a fixed microwave burst time of 50 μs,

near the resonance condition for intervalley spin-flip transition (5). For increasing power, the line does not only become taller and wider but
also moves towards higher frequencies. Panel (b) summarizes from top to bottom the center frequency, width, and height of the response.
�f

(5)
0 = f

(5)
0 − 17.825 GHz. (c) Top panel of (b) replotted using a linear power scale (x axis ∝ 10MW power(dBm)/5). The blue line represents a

linear fit to the black data points to the relation �Easymp ∝ ε2
1 [Eq. (S42)]. The points indicated by the red crosses are excluded from the fit.

In order to study the sensitivity to electric fields of the
respective transitions, we show in Fig. 3(a) the dependence of
the frequency of resonances (1) and (5) on the voltage applied
to one of the quantum dot gates, V2. Clearly, resonance (5)
exhibits a much greater sensitivity to gate voltage than reso-
nance (1): ∼ 18.5 MHz/mV for f

(5)
0 , versus ∼0.5 MHz/mV

for f
(1)
0 . We also notice that the two resonance shifts as

a function of V2 have opposite sign, which indicates that
different mechanisms are responsible. For resonance (1), we
believe that the dominant effect of the electric field is the
displacement of the electron wave function in the magnetic
field gradient from the micromagnets [17] (see Sec. III B of
the Supplemental Material). This effect also contributes to the
frequency shift of resonance (5), but presumably it is masked
by the change in valley-orbit splitting (EV S) resulting from the
displacement of the electron wave function in the presence of
interface disorder [11,38]. For instance, moving the electron
towards or away from a simple atomic step at the Si/SiGe
interface leads to a change of the valley-orbit energy splitting,
as shown by the results of numerical simulations reported in
Figs. 3(b) and 3(c) [39]. As expected, the simulations predict a
minimum in the valley-orbit splitting when the wave function
is centered around the atomic step, but interestingly it does not
vanish, i.e., the opposite signs for the valley-orbit splitting left
and right of the atomic step do not lead to complete cancellation
(see Sec. IV of the Supplemental Material for a more detailed
description).

The ∼35 times greater sensitivity of the spin-valley transi-
tion frequency to electric fields may contribute to its ten times
larger line width compared to the intravalley spin transition.
The line width of the intravalley spin transition is believed to be
dominated by the 4.7% 29Si nuclear spins in the host material
[17]. The nuclear field also affects the spin-valley transition,
but obviously only accounts for a small part of the line width
here. We propose that the dominant contribution to the line
width of resonance (5) is low-frequency charge noise.

Although not definitive, some evidence for this interpreta-
tion is found in Fig. 3(d), which shows a scatter plot of f

(5)
0 and

one of the dot-reservoir tunnel rates, simultaneously recorded
over many hours (see Sec. III C of the Supplemental Material
[26] for a more detailed description of the measurement
scheme). The dot-reservoir tunnel rate serves as a sensitive
probe of local electric fields, including those produced by
charges that randomly hop around in the vicinity of the quan-
tum dot (see Fig. S6) [40]. The plot shows a modest correlation
between the measured tunnel rate and f

(5)
0 , suggesting that the

shifts in time of both quantities may have a common origin,
presumably low-frequency charge noise.

In this case, we can also place an upper bound on T ∗
2 permit-

ted by charge noise for the intravalley spin transitions (1,2) in
the present sample (given the specific magnetic field gradient
reported in Ref. [17]). Indeed, due to the micromagnet-induced
gradient in the local magnetic field parallel to Bext, the pure spin
transitions are also sensitive to charge noise. Given that T ∗

2 ∼
110 ns for transition (5) and the ratio of ∼35 in sensitivity to
electric fields, charge noise in combination with this magnetic
field gradient would limit T ∗

2 to ∼3.8 μs for transitions (1,2).
It is important to note that this is not an intrinsic limitation,
as the stray field of the micromagnet at the dot location
can be engineered to have zero gradient of the longitudinal
component, so that to first order charge noise does not affect
the frequency and T ∗

2 of transitions (1,2). At the same time, a
strong gradient of the transverse component can be maintained,
as is necessary for driving spin transitions.

Besides its strong sensitivity to static electric fields, we
report a surprising dependence of the frequency of reso-
nance (5) on microwave driving power [Figs. 4(b) and 4(c)].
Increasing the driving power, the resonance not only broadens
but also shifts in frequency, as in an a.c. Stark shift [41].
This dynamical evolution is very different from the case of the
intravalley spin resonance, which is power broadened but stays
at fixed frequency [8,17]. This frequency shift is, at least for
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a limited microwave power range, in line with the dynamical
level repulsion captured by Eq. (S42), where �Easymp ∝ ε2

1
expresses the energy splitting between resonance (5) and
its asymptote, h̄ω = EZ − E01. This relation is verified in
Fig. 4(c) for microwave powers of 9–17 dBm.

Finally, we attempt to drive coherent oscillations using
resonance (5) at high applied microwave power, recording the
spin excited state probability as a function of the microwave
burst time. Oscillations are not visible, indicating that the
highest Rabi frequency we can obtain for resonance (5) is well
below the corresponding 1/T ∗

2 of 110 ns. This is consistent
with our estimate that the Rabi frequency is of the order
of 10 kHz, based on the magnitude of the dynamical level
repulsion seen in Figs. 1(a) and 1(b) and the derivation in
Sec. II B of the Supplemental Material [26].

V. CONCLUSIONS

Despite its simplicity, the electrical driving of a single
electron confined in a single quantum dot can produce a
complex spin resonance energy spectrum. This particularly
applies for quantum dots realized in silicon, where the
presence of the excited valley-orbit state, close in energy and
strongly coupled to the ground state, introduces a substantial
nonlinearity in the system response to microwave electric
fields. This allows us to observe a transition whereby both
the spin and the valley state are flipped at the same time.
We demonstrate how both static external electric fields and
electrical noise influence the frequency of this intervalley spin
transition, limiting its coherence properties and its potential
utility as a qubit [25].

Much of the dynamics of the spin and valley transitions
can be captured in a semiclassical picture, including driving
using higher harmonics exploiting nonlinearities. However,
under intermediate or strong driving, new phenomena emerge
that cannot be easily explained except in terms of dressed
states that fundamentally involve a quantum mechanical
coupling between photons and orbital or spin states. Here, we
have provided experimental and numerical evidence for the
existence of such dressed states of photons and valley-orbit
states at strong driving. We have further estimated the strength
of this valley-orbit to photon coupling by comparing our
analytical theory to the experiments.

This work provides important experimental and theoretical
insight in the role of intervalley transitions for controlling spin
dynamics in silicon based quantum dots. It also highlights
the limitations of valley-based qubits in the presence of strong
valley-orbit coupling, due to their sensitivity to electrical noise.
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[7] F. Forster, M. Mühlbacher, D. Schuh, W. Wegscheider, and S.
Ludwig, Electric-dipole-induced spin resonance in a lateral dou-
ble quantum dot incorporating two single-domain nanomagnets,
Phys. Rev. B 91, 195417 (2015).

[8] P. Scarlino, E. Kawakami, D. R. Ward, D. E. Savage, M. G.
Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and

L. M. K. Vandersypen, Second-Harmonic Coherent Driving of
a Spin Qubit in a Si/SiGe Quantum Dot, Phys. Rev. Lett. 115,
106802 (2015).

[9] A. V. Khaetskii and Y. V. Nazarov, Spin-flip transitions between
Zeeman sublevels in semiconductor quantum dots, Phys. Rev. B
64, 125316 (2001).

[10] Mark Friesen, M. A. Eriksson, and S. N. Coppersmith, Magnetic
field dependence of valley splitting in realistic Si/SiGe quantum
wells, Appl. Phys. Lett. 89, 202106 (2006).

[11] Mark Friesen and S. N. Coppersmith, Theory of valley-orbit
coupling in a Si/SiGe quantum dot, Phys. Rev. B 81, 115324
(2010).

[12] S. Goswami, K. A. Slinker, Mark Friesen, L. M. McGuire, J. L.
Truitt, C. Tahan, L. J. Klein, J. O. Chu, P. M. Mooney, D. W. van
der Weide, R. Joynt, S. N. Coppersmith, and Mark A. Eriksson,
Controllable valley splitting in silicon quantum devices, Nat.
Phys. 3, 41 (2007).

[13] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons,
L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith,
and M. A. Eriksson, Silicon quantum electronics, Rev. Mod.
Phys. 85, 961 (2013).
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