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State-conditional coherent charge qubit oscillations
in a Si/SiGe quadruple quantum dot
Daniel R Ward1,2,5, Dohun Kim1,3,5, Donald E Savage4, Max G Lagally4, Ryan H Foote1, Mark Friesen1, Susan N Coppersmith1 and
Mark A Eriksson1

Universal quantum computation requires high-fidelity single-qubit rotations and controlled two-qubit gates. Along with high-
fidelity single-qubit gates, strong efforts have been made in developing robust two-qubit logic gates in electrically gated quantum
dot systems to realise a compact and nanofabrication-compatible architecture. Here we perform measurements of state-conditional
coherent oscillations of a charge qubit. Using a quadruple quantum dot formed in a Si/SiGe heterostructure, we show the first
demonstration of coherent two-axis control of a double quantum dot charge qubit in undoped Si/SiGe, performing Larmor and
Ramsey oscillation measurements. We extract the strength of the capacitive coupling between a pair of double quantum dots by
measuring the detuning energy shift (≈75 μeV) of one double dot depending on the excess charge configuration of the other
double dot. We further demonstrate that the strong capacitive coupling allows fast, state-conditional Landau–Zener–Stückelberg
oscillations with a conditional π phase flip time of about 80 ps, showing a promising pathway towards multi-qubit entanglement
and control in semiconductor quantum dots.
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INTRODUCTION
Since being proposed theoretically,1,2 much experimental and
theoretical progress has been made towards the development of
a scalable quantum-computing architecture using electrically
gated semiconductor quantum dot-based spin qubits.3–23 Two-
qubit gates are essential, and capacitive coupling has been used in
GaAs quantum dot-based spin qubits to demonstrate both
conditional singlet–triplet exchange oscillations,24 and the gen-
eration of the entanglement of two neighbouring singlet–triplet
qubits.25 Recently, one- and two-qubit gate operations have been
demonstrated in 28Si-based quantum dot spin qubits,26,27 harnes-
sing the substantial improvement in coherence time achievable
through isotopic purification and the corresponding reduction in
nuclear spin density. Improving gate speeds provides an
alternative route to realise high fidelity single- and multi-qubit
gates, and intensive efforts have been made to realise fast
manipulation of semiconductor spin qubits by mixing the spin
degrees of freedom with charge degrees of freedom through
spin–orbit coupling or the introduction of micromagnets.28–30

Motivated by the search for high-speed qubits with strong
interactions, semiconductor quantum dot charge qubits also have
been studied and qubit manipulations performed in both GaAs31–34

and Si,35,36 with typical charge qubit coherence times of the order of
100 ps to 10 ns. Strong capacitive coupling between double dots is
essential for two-qubit gates, and measured interdot capacitive
couplings in GaAs quantum dots are in the range 25–120 μeV.37–39

This capacitive coupling has been used to perform conditional
rotations of a GaAs charge qubit;38 yet similar measurements so far
have not been possible in silicon-based quantum dots. Moreover,
dopant-free devices, which have recently become prevalent for Si/

SiGe quantum dot qubits, require a blanketing array of metal
electrodes that partially screen the capacitive coupling, making this
issue all the more urgent.12,17,30,40–43

Here we present measurements of a quadruple quantum dot
formed in an undoped Si/SiGe heterostructure and demonstrate
fast and charge-state-conditional coherent manipulation of two
strongly coupled double quantum dots. Non-adiabatic pulsed
gate techniques allow fast two-axis control of the double dot
charge qubit formed. We show that the strong capacitive coupling
(418 GHz) between two sets of double quantum dots enables
charge-state-conditional coherent Landau–Zener–Stückelberg
(LZS) interference with a conditional π phase flip time of
approximately 80 ps, demonstrating progress towards realizing
high-fidelity two-qubit control. Although we focus here on
conditional coherent operations of a charge qubit, the measure-
ment strategy and strong inter-qubit coupling deduced from the
present study can also be directly applied to singlet–triplet25 or
hybrid quantum dot qubits,18,20 where strong capacitive coupling
will have an essential role in the realisation of fast two-qubit gates.

RESULTS
We study a linear quadruple quantum dot formed in an undoped
Si/SiGe heterostructure, as shown in Figure 1a. The dots are
formed under the gates D1 through D4, approximately under the
dashed line shown in Figure 1a, and for the experiments we report
here, it is useful to describe the quadruple quantum dot as a pair
of double quantum dots. The right double dot (RDD), formed
under the gates D3 and D4, forms a charge qubit that will be
manipulated coherently based on the charge state of the left
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double dot (LDD), which is formed under gates D1 and D2. Charge
sensing is performed by two charge-sensing quantum dots
adjacent to the left (LSD) and right (RSD) hand sides of the
quadruple dot array. The location of sensor RSD is close to the
position that would naively be expected by examination of
Figure 1a; to improve its charge sensitivity, sensor LSD is shifted to
a position very close to the quadruple dot by careful tuning of the
large number of gate voltages available on that side of the device.
We monitor changes in the conductances gL and gR of sensor dots
LSD and RSD, respectively, to monitor the electron occupations of
double dots LDD and RDD. Figure 1c,d shows charge stability
diagrams for the LDD (Figure 1c) and RDD (Figure 1d),
respectively, demonstrating control of the four dot occupations
as a function of the four gate voltages VD1, VD2, VD3 and VD4. As we
show in Supplementary Figure S1e, the tunnel coupling and the
capacitive coupling between the LDD and RDD both are reduced
when the LDD has lower electron occupation. Thus, we perform
here coherent manipulation in the regime for which the LDD has a
total electron occupation larger than (10,10).
We first show coherent two-axis control of an undoped Si/SiGe

double dot charge qubit formed in the RDD. For this demonstra-
tion, the LDD energy detuning εL is kept 4300 μeV so that the
LDD charge occupation is not affected by the RDD manipulation
pulses. The charge qubit states are defined as |0〉R = |L〉 (excess
charge is on the left dot) and |1〉R = |R〉 (excess charge is on the
right dot). The initial qubit state |0〉R is prepared at negative RDD
energy detuning εR. As shown schematically in Figure 2a–c, non-
adiabatic control of the charge qubit is performed using abrupt
changes in detuning energy with precise control of the pulse
duration time as well as the amplitude. The pulses, generated

using a Tektronix AWG70002A arbitrary waveform generator
(AWG) with a rise time of 40 ps, are applied to gate D3 through
a commercial bias tee (Picosecond PulseLabs 5542–219).
X-rotations on the Bloch sphere, shown in Figure 2a, correspond
to oscillations between the qubit states |0〉R and |1〉R. Changing
the peak detuning (εP) abruptly to εP = 0, as shown by the green
pulse in Figure 2b, yields in the ideal case an X-rotation on the
Bloch sphere. At ε= 0 the Hamiltonian is H=ΔRσx, where ΔR is the
tunnel coupling between D3 and D4, so the state evolves
periodically in time at the Larmor frequency 2ΔR/h, where h is
Planck’s constant. In the experiment, there is a finite rise time for
the pulse at the sample, and the axis of rotation on the Bloch
sphere will depend on the exact detuning value reached at each
stage of the pulse, so that the schematic drawings in Figure 2a,c
are simpler than the case realized in the experiment. After a time
evolution of duration tp, the final state is measured by abruptly
changing the detuning back to negative εR. We use the difference
of the conductance of the RSD between |0〉R and |1〉R to determine
a time-averaged signal proportional to the probability P1 of the
state being in |1〉R.

18

Figure 2d,e shows coherent oscillations of P1 resulting from
the non-adiabatic Larmor pulse sequences described above.
In Figure 2d, we plot P1 as a function of tp and the gate voltage
VD3, the latter of which determines the base level of εR. In order to
overcome a sampling time limitation of our AWG, we modified the
pulse generation scheme to allow sub-picosecond timing resolu-
tion (see Supplementary Figure S2). In Figure 2d, the path of the
pulse maximum level detuning εP = 0 is curved (see the white
dashed curve following the maxima in Figure 2d, which is drawn
by running a smooth curve through the oscillation peaks), most
likely because of the finite rise time of the pulse and frequency-
dependent attenuation in the microwave coaxial cable.32

Figure 2e shows a line cut through this path corresponding
approximately to εP = 0, revealing periodic oscillations in P1 at a
frequency of order 10 GHz, corresponding to ΔR/hC5 GHz. We
typically observe beating of the oscillations after tp = 300 ps. This
likely arises because of the superposition of a reflected part of the
pulse with the original pulse, modifying the detuning
amplitude.18,32

The high-frequency oscillations of P1 in Figure 2d for
VD3o222 meV arise from coherent LZS interference
patterns.44,45 As VD3 becomes less positive in Figure 2d, the pulse
maximum level detuning enters the regime εP40, where the
interdot tunnel coupling acts as a beam splitter.46,47 Here the
splitting ratio between the upper and lower branches of the
charge qubit dispersion is determined by the detuning ramp rate
in comparison with the tunnel coupling. On the return edge of the
pulse, the two different trajectories returning through the
beamsplitter at εP = 0 can coherently interfere.
The measurement of qubit state rotations about the Z-axis on

the Bloch sphere, shown schematically in Figure 2c, can be
performed using two X3π/2 pulses. The qubit state is first prepared
in the state |− Y〉R =

ffiffiffiffiffiffiffiffi
1=2

p
(|0〉R− i|1〉R), by initialising to state |0〉R

and by performing an X3π/2 rotation. The qubit state then acquires
a relative phase φ ¼ e - iteΔE01;R=h, where te is the time spent
between the two X rotations at the base value of the detuning and

the qubit energy splitting E01;R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εR2 þ 2ΔRð Þ2

q
. This phase

evolution corresponds to a rotation of the qubit state around
the Z-axis of the Bloch sphere. Figure 2f,g shows the resulting
quantum oscillations of the qubit state around the Z-axis of the
Bloch sphere. In Figure 2g, the line cut is taken at VD3�222.7 mV
in Figure 2f, corresponding to εP≈0, and a smooth third-order
polynomial background oscillation was removed from the raw
data for clarity33,35 (Supplementary Figure S3). By fitting the data
to an exponentially damped sinusoidal oscillation, we extract
the Ramsey fringe oscillation frequency fRamsey ≈56 GHz and a
coherence time T�

2 ~ 51 ps.

Figure 1. Si/SiGe device structure and charge stability diagrams of a
pair of double quantum dots. (a) Scanning electron microscope
image and schematic labelling of a device lithographically identical
to the one used in the experiment. For clarity, only the gates in the
bottom level are shown in the main panel. The inset to a shows the
completed device with top level gates. Conductances through the
left and right sensor dots (LSD and RSD) were used to monitor the
charge occupations in the left and right double dots. (b) Schematic
cross section through the dashed line in a and diagram of a pair of
double quantum dots formed under gates D1 to D4. (c and d) Charge
stability diagrams of the left (c) and right (d) double dots, measured
using the conductance of LSD (gL) and RSD (gR), respectively. For
clarity, a linear background was subtracted from the raw data, and
the resulting conductance variations (ΔgL and ΔgR) are plotted.
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The gate voltage dependence of both the LZS interference and
the Ramsey fringe frequencies provides accurate measures of the
detuning lever arm. Figure 2h shows the LZS oscillation frequency
fLZS as a function of VD3. As these LZS oscillations are measured in
the limit εP4ΔR, we use an approximate form of the charge qubit

energy level, E01;R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2R þ 2ΔRð Þ2

q
� εR ¼ hf LZS, and fit the data

to the form Δf LZS ¼ αεR;D3ΔVD3 to determine the gate lever arm
αεR;D3≈32.5 GHz/mV≈135 μeV/mV.
We now discuss the measurement of the capacitive coupling

between the double quantum dots. With the detuning lever arm
calibrated as described above, the coupling strength can be
measured by sweeping εL and εR through the LDD and RDD
charge degeneracy points. Figure 3 shows the LDD and RDD
polarisation lines, characterised by measuring the differential
conductance of the left and right sensors, LSD (Figure 3a) and RSD
(Figure 3b), as functions of the two critical variables, the detuning
parameters for the LDD and RDD: εL and εR. We sweep εL and εR by
controlling the voltages on (VD1, VD2) and (VD3, VD4), respectively.
The positions of the excess charges (the electrons in each double
dot that are free to move) are shown schematically as insets to
Figure 3b. The coupled charge stability diagram reveals the four
possible ground-state charge configurations for an extra electron
in each of the two double dots. The grey dashed lines in Figure 3b

Figure 2. Demonstration of two-axis control of an undoped Si/SiGe charge qubit formed in the right double dot. (a) Time evolution of the
Bloch vector during a non-adiabatic DC-pulsed gate (Larmor oscillation). An abrupt change in the detuning εR from a negative value, where
state |0〉R is the eigenstate of the Hamiltonian, to εP= 0 induces a rotation of the state around the X-axis of the Bloch sphere. (b) Schematic
energy level diagram of a double dot charge qubit with the pulse sequences for Larmor (X-axis rotation, green) and Ramsey (Z-axis rotation,
orange) oscillation measurements. (c) Schematic time evolution of the Bloch vector during a Ramsey fringe measurement pulse sequence. An
X3π/2 pulse is applied to initialise the state on the XY plane of the Bloch sphere, and the state then evolves freely around the Z-axis for

evolution time te with the rotation frequency E01,R/h determined by the right qubit energy spliting E01,R=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εR2 þ 2ΔRð Þ2

q
, where εR and ΔR are

defined in the energy level diagram. A second X3π/2 pulse maps the Y-axis to the (negative) Z-axis, and the average charge occupation is
measured via the conductance change of the RSD (Figure 1a) (d) Coherent oscillation of uncalibrated probability P1 in arbitrary units
corresponding to Larmor oscillations (X-axis rotations) as a function of voltage VD3 on gate D3 and pulse duration tp of a single-step pulse (see
a, green pulse). (e) Line cut along the contour shown as the white dashed line in (d), which corresponds to εR= 0, showing coherent Larmor
oscillations. (f) Demonstration of Z-axis control performed with a Ramsey fringe experiment (corresponding to the orange pulse sequence
shown in b): uncalibrated P1 as a function of VD3 and te. (g) Line cut through the Ramsey fringe data, taken at the value of VD3 indicated by a
red arrow in f, as a function of te. For clarity, a background probability variation of a third-order polynomial in time was removed from the raw
P1, as shown in the Supplementary Figure S3. The oscillations arise because of rotations of the Bloch vector about the Z-axis of the
Bloch sphere. (h) Landau–Zener–Stüeckelburg (LZS) oscillation frequency fLZS as a function of VD3 in the regime, where the pulse
maximum level detuning εp4ΔR. The red solid line shows a linear fit to Δf LZS � αεR;D3ΔVD3 with best fit parameter of gate D3 lever arm
αεR;D3≈32.5 GHz/mV≈ 135 μeV/mV.

Figure 3. Measurement of the capacitive coupling between two
sets of double quantum dots. (a, b) The left and right double
dot polarization lines are characterised by measuring the LSD
(a) and RSD (b) differential conductances as functions of
the detunings εL and εR. A polarisation line is identified by
its large differential conductance. In b, the insets show
schematic diagrams of the location of the excess charge in the
capacitively coupled double quantum dots. The grey dashed lines
represent the shift of RDD polarisation line detuning
(ΔεR≈ 75 μeV) due to one electron moving from the left dot to
the right dot in the LDD.
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show the RDD detuning energy shift (ΔεR) arising from the
movement of a single electron from left to right in the LDD. The
shift in this line is a direct measure of the energy shift in the RDD
resulting from the capacitive coupling between the two double
dots. From the energy calibrations reported above, we extract
ΔεR≈75 μeV≈18.3 GHz. This energy shift is the available detuning
modulation for the performance of two-qubit gates in quantum
dots of a size and separation similar to those studied here.
We now show that the capacitive coupling demonstrated above

enables fast charge-state-conditional phase evolution of a
quantum dot charge qubit. We study LZS oscillations in the RDD
in the presence of a slowly varying perturbation from the excess
charge in the LDD. Figure 4a illustrates schematically in green the
pulse applied to the RDD for this experiment. The pulse is applied
at a series of different values of εL (the vertical axis in Figure 4b–f).
The pulse minimum detuning is controlled using VD3, and the
pulse amplitude is held fixed at 210 μeV. In Figure 4b–f, we vary
VD3 from 221.7 to 222.5 in steps of 0.2 mV. The effect of these
steps is to change the energy in detuning of the maximum of the
fast pulse, thus changing the frequency of the LZS oscillations. For
example, the oscillations in Figure 4a are much faster than those
visible in Figure 4f. The physical origin of this variation is the
energy difference between the two charge qubit states: in
Figure 4a, the maximum of the pulse sits at large detunings,
corresponding to a large energy difference between the states. In
contrast, in Figure 4f, the pulse maximum sits at detunings much
closer to the charge qubit anticrossing, so that the energy
difference between the charge qubit states is significantly smaller.
For each of these LZS oscillation measurements, εL is slowly

swept from +180 to − 320 μeV (see the vertical axis in the top
panels of Figure 4b–f). This variation in εL has two effects. First, the
cross-talk between εL and the RDD results in a continuous shift in
the detuning of the RDD, causing the LZS oscillations be tilted in

each of the top panels of Figure 4b–f. Second (and this is the main
result of Figure 4), at εL = 0, the excess charge occupation of the
LDD changes from (0, 1)L to (1, 0)L—this change occurs quite
abruptly at zero detuning of the LDD, as can be observed in Figure
4b–f. This change in the charge configuration of the LDD produces
a sudden decrease in frequency in Figures 4b–f at εL = 0. This
decrease in frequency reflects the decreased detuning εP that the
LZS pulse maximum reaches because of the effective change in
the pulse minimum detuning energy.
The bottom panels of Figure 4b–f show line cuts of the LZS

oscillations in the RDD for the (0, 1)L LDD ground state (black
arrow on the left in Figures 4b) and (1, 0)L LDD ground state
(red arrow on the left in Figure 4b). At any given evolution time
tp, a phase change is clearly visible, and this phase change arises
from the shift of one electron in the LDD. Using this effect, a
charge-state-conditional π phase flip can be achieved in a time
tp as short as 80 ps, as indicated by the black arrow in Figure 4e.
Figure 4g shows the difference in fLZS between the cases when

the LDD ground state is (0, 1) (black circles) and when this ground
state is (1, 0) (red circles). The frequency differences vary from 7 to
10 GHz, and this plot can be used to infer the speed of a
conditional phase (CPHASE) gate if full control over qubits in both
the left and right double dots in a device like that shown here is
realized in the future. We emphasise that the frequency changes
observed here arise from competing effects: fLZS of the RDD
increases as we change a gate voltage to increase εL, whereas fLZS
decreases as we cross zero detuning in the LDD, resulting in the
motion of a single electron charge. As we take line cuts at
εL≈± 80 μeV to clearly show LZS oscillations in the (0, 1)L and
(1, 0)L ground states, we believe that using an LDD detuning pulse
amplitude o160 μeV, when LDD coherent manipulation is
realized, can lead to a faster conditional phase gate than that
estimated here.

Figure 4. Charge-state-conditional coherent quantum interference. (a) Schematic diagram of the pulse sequence used for the measurement of
Landau–Zener–Stückelberg (LZS) quantum interference in the right double dot (RDD) as a function of the detuning of the left double dot
(LDD). (b–f) Coherent LZS oscillations of uncalibrated P1 as a function of the LDD detuning εL and the duration tp of the pulse applied to the
RDD with fixed base levels of VD3= 221.7 (b), 221.9 (c), 222.1 (d), 222.3 (e) and 222.5 mV (f). (g) LZS interference frequencies, fLZS, with (0, 1)L—
(black) and (1,0)L—(red) excess charge configuration of the LDD as functions of VD3. The black arrow in (e) highlights the shift in the location of
the peak in the probability that corresponds to a conditional π phase rotation achieved in �80 ps.
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DISCUSSION
Here we have demonstrated a strong capacitive coupling of
≈18 GHz between two double quantum dots in a linear quadruple
dot array geometry, and this coupling enabled the observation of
fast charge-state-conditional coherent oscillations with a condi-
tional phase flip time of 80 ps. Coupling of this magnitude
demonstrates a key physical interaction necessary for a two-qubit
CPHASE gate. Moreover, because we measure single-qubit X
(Larmor) and Z (Ramsey) rotations with rotation frequencies also
on the order of 10 GHz, one can envision universal quantum logic
gates in semiconductor charge qubits that are all fast. Although
we use abrupt changes in the baseline detuning here, resonant
microwave control is also plausible,36 in which case a two-qubit
controlled not gate (CNOT) could be implemented in analogy with
ref. 27. We stress, however, that the full demonstration of two-
qubit charge qubit gates remains as a challenge, as in this work
coherent control of the LDD could not be achieved. A more
compact gate geometry that enables greater tunability in the
tunnel coupling, which could potentially be achieved using
an overlapped Al/Al2O3 gate structure,26,43 is a promising path
towards achieving fully tunable tunnel couplings in both
neighbouring double quantum dots. Finally, we note that the
strong capacitive coupling observed here is also a valuable
resource with the potential to enable two-qubit gates in multi-
electron spin qubits, including singlet–triplet6,25 and hybrid
quantum dot qubits.18,20,48–50

MATERIALS AND METHODS
Fabrication
The device heterostructure was grown using chemical vapour deposition
on commercially available SiGe substrates with a 29% Ge composition. The
chemical vapour deposition growth sequence from the starting substrate
was deposition of a strain-matched SiGe buffer layer followed by
deposition of a 12-nm-thick strained Si well. The well was capped by
deposition of 50 nm of SiGe, followed by a few nanometres of sacrificial
strained Si to cap the heterostructure.
Devices were fabricated using a combination of electron beam

lithography and photolithography. The device nanostructure was fabri-
cated in two layers starting on a 15 nm gate dielectric of Al2O3 deposited
by atomic layer deposition. The first layer of control gates was patterned in
two electron beam lithography/metallisation steps to improve the gate
density, and the metal layers were Ti followed by Au. The second reservoir
gate layer (see inset to Figure 1a) is isolated from the first with another
80 nm layer of Al2O3 grown via atomic layer deposition. The second gate
layer was also metallised with Ti/Au. A third layer of Al2O3 was deposited
over the second gate layer to protect the gates during subsequent
fabrication steps. Ohmic contacts were fabricated using annealed P+ ion
implants.

Measurement
The charge stability diagrams of the LDD and RDD are characterised by
measuring the conductance changes through the left and right sensor dots
(LSD and RSD, respectively, see Figure 1a) that are operated at a fixed
voltage bias of 50 μV, and the currents are measured with two current
preamplifiers (DL Instruments model 1211). Supplementary Figure S1
shows large-scale charge stability diagrams and the positions of charge
transitions of the LDD and RDD in the electron occupation regime used in
the present experiment. For the manipulation of the RDD charge qubit, fast
voltage pulses with repetition rate of 25 MHz are generated using two
outputs of a Tektronix AWG70002A arbitrary waveform generator, which
are added to the dot-defining dc voltage through a bias tee (Picosecond
Pulselabs 5542–219) before being applied to gate D3. The conductance
change through the RSD with and without the manipulation pulses,
measured with a lock-in amplifier (EG&G model 7265), is used to determine
the average charge occupation. For the measurement of changes in charge
occupation probabilities resulting from fast manipulation pulses, we
modulated the manipulation pulses with a low frequency (≈777 Hz) square
wave envelope, similar to the technique used in previous studies.36,48 We
compare the measured signal level with the corresponding |0〉R to |1〉R
charge transition signal level, calibrated by sweeping gate D3 and applying

a 777 Hz square pulse to gate D3 with an amplitude same as that of the
manipulation pulses.
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