PH109 Monday 10/15/01

Musical Intervals - Musical Scales

1. Musical Interval:

a tune consists of a sequence of frequency changes, called "intervals".
We perceive the intervals as being the same if the
RATIO of the frequencies is the same:
example: $1: 2$ ratio (octave) $200 \mathrm{~Hz} \rightarrow 400 \mathrm{~Hz}$
same as $300 \mathrm{~Hz} \rightarrow 600 \mathrm{~Hz}$
2:3 ratio ("fifth") $200 \mathrm{~Hz} \rightarrow 300 \mathrm{~Hz}$
same as $300 \mathrm{~Hz} \rightarrow 450 \mathrm{~Hz}$
divide or multiply all frequencies of a tune by same number -> same tune (called "transposition")
2. Consonance (harmony) = "simple" number ratios

e.g.	2:1 ("octave");
	$3: 2$ ("fifth")
	$5 / 4$ ("major third")

where do names of intervals come from?

Physical basis (conjecture): no beats between overtones (overtones either agree exactly or not at all).

Dissonance Curve

Sethares, UW EEC

unison
fourth fifth
octave

example: $4 / 3$ = 'fourth". Assume 200 Hz and 150 Hz :

| tone 1: | 200 | | 400 | 600 | | 800 | | 1000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| tone 2: | 150 | 300 | 450 | 600 | 750 | | 900 | |

3. Constructing a scale ("just" scale)

freq. ratio of the THE TRIAD:

call first tone of scale C and assign to it a frequency of 1unit (1 unit can be any number of Hz)
to get Hz , you could multiply by any number you like, e.g. multiply by 240 :
$240 \mathrm{~Hz}->300 \mathrm{~Hz}->360 \mathrm{~Hz}->480 \mathrm{~Hz}$
why choose these intervals? CONSONANCE!
tune the white keys of the piano......
$\begin{array}{lllllllll}\text { C } & \mathbf{D} & \mathbf{E} & \text { F } & \text { G } & \text { A } & \text { B } & \text { C } & \text { D }\end{array}$
.....to three triads:

$$
\begin{array}{llllllllll}
\text { C-E-G: } & \underline{C} & \text { D } & \underline{E} & \text { F } & \underline{G} & \text { A } & \text { B } & \text { C } & \text { D } \\
\text { G-B-D: }: & \text { C } & \text { D } & \text { E } & \text { F } & \underline{G} & \text { A } & \underline{B} & \text { C } & \underline{D} \\
\text { F-A-C: } & \text { C } & \text { D } & \text { E } & \underline{F} & \text { G } & \underline{A} & \text { B } & \underline{C} & \text { D }
\end{array}
$$

Now calculate the required frequencies: they must be in the proportions 1 -5/4-3/2

Just Scale:

white keys of the piano

