Scales: major, minor and other "modes"

Here "mode" (or "key") refers to a specific arrangement of whole and half-tone intervals used in a given tune
most common modes:

$$
\begin{array}{lll|lllllll|lllll}
\text { major: } & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{2} & 1 & 1 & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{2} & 1 & 1 \\
\text { minor: } & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{2} & 1 & 1 & 1 & \frac{1}{2} & 1 & 1 & \frac{1}{2} & 1 & 1
\end{array}
$$

ancient modes: Greek modes, Gregorian modes
white keys on keyboard play C-major and A-minor only need black keys for other modes, e.g. C-major -> D-major names: $\mathrm{F}^{\#}(\mathrm{~F}$-sharp) is half-tone above F , etc.

$$
\mathbf{E}^{\mathrm{b}}(\text { E-flat }) \text { is half-tone below } E, \text { etc }
$$

```
examples on blackboard:
    what tones used for D-major?
    what tones used for C-minor?
```

demo: row-your-boat in minor key

Help in visualizing scales:

- equal musical intervals - equal frequency ratio
-on a "multiplicative" number line (=log scale) equal ratios are equidistant
- advantage: in graphs below equal intervals have same length

Disadvantage of Just tuning:

Tempered Tuning - a Compromise

Tempered tuning: all half-tone intervals are identical

$$
\begin{array}{c|c|cccccc}
\mid & \mid \\
\mathbf{C} & \mathbf{D} & \mathbf{E} & \mathbf{F} & \mathbf{G} & \mathbf{A} & \mathbf{B} & \mathbf{C}
\end{array}
$$

advantage: transposition maintains same intervals
but: how calculate the frequencies?
how close to JUST are the resulting intervals?

Calculate Tempered Frequency Ratios

Octave $=12$ semitones

$$
2=x \cdot x \cdot x \cdot \ldots .=x^{12}
$$

semitone ratio: $\quad x=1.05946 \ldots$

whole tone ratio: 2 semi $=x^{2}=1.1225$ minor third ratio: 3 semi $=x^{3}=1.189$ not very good major third ratio: 4 semi $=x^{4}=1.260$ not very good fifth ratio: $\quad 7 \mathrm{semi}=x^{7}=1.498 \quad$ very good "perfect fifth"

disadvantage of tempered tuning

tempered:

the major third is sharp
the minor third is flat
how much is it out of tune?
just major third: ratio $5 / 4=1.25$
tempered major third: ratio $(1.05946 \ldots)^{4}=1.260$

$$
\begin{aligned}
& \text { e.g } 200 \mathrm{~Hz}+250 \mathrm{~Hz} \text { :4th and 5th partials }=1000+1000 \mathrm{~Hz} \\
& \text { vs } 200 \mathrm{~Hz}+252 \mathrm{~Hz} \text { : } \quad 1000+1010 \mathrm{~Hz}
\end{aligned}
$$

Handout on SCALES

- equal musical intervals - equal frequency ratio
- on a "multiplicative" number line (=log scale) equal ratios are equidistant
- advantage: in graphs below equal intervals have same length

Handout on SCALES (page 2)

purpose of this page: to transpose or to compare just and tempered tuning, either cut the page into strips so you can shift one scale with respect to the other, or copy to scale at the edge of another piece of paper and then shift the other paper (examples were done on blackboard)

