Reminder:

First exam: Monday October 8, 2001

the exam covers:

- Homework
- Lab through Strings
- Study questions (will be handed out Monday)
 - Review Sessions by TA's on October 6 or 7 (times and rooms will be announced)

if you received no <u>e-mail</u> from PH109, you should deposit your <u>correct</u> e-mail address at registrar

Sound Waves in Air

 <u>Sound waves in gases (air):</u> longitudinal (compression) waves

wave length:	= v/f	example (homework)
		demo

 <u>Speed of sound in air</u>: v = 344 m/s = 1130 ft/s at 20° C (68°F) v increases with temperature</u>
 (increase 0.6 m/s per degree C = 1 ft/s per deg F). air pressure does not affect v! <u>frequency does not affect v!</u>

<u>relevance</u>: pitch of wind instruments changes with v

INTERFERENCE OF TWO SOUND SOURCES

demo; example (homework)

TRANSVERSE WAVES ON STRING

Speed v of pulse (or wave) on string depends onpull on string - "tension" T in N (Newtons)

• how fat the string is - mass per meter length: $= m/\ell$

$$\mathbf{v} = \sqrt{\frac{\mathbf{T}}{\mathbf{m}}} = \sqrt{\frac{\mathbf{T}}{\mathbf{m}}}$$

T: tension (in Newtons) m/ℓ in kg/m example (homework) Vibration of Strings:

Transverse motion (displacement of string)

Travel time along string and back

Frequency f = 1/period

Fundamental frequency f₁

$$f_1 = \frac{v}{2L}$$

shorter string -> higher f (inverse proportion)

Demo: Slinky, GuitarEXAMPLE (homework)CD demo

Changing String Tension and Mass

$$f_1 = \frac{v}{2L} = \frac{1}{2L} \sqrt{\frac{T}{2L}}$$

higher tension (larger T) - higher f more massive string (larger) - lower f

Example: string frequency 300 Hz for T = 40 Nfind frequency for T = 50 Nhint: use proportions! (homework)

HIGHER MODES OF STRING

An oscillation is called a "MODE" if each point makes simple harmonic motion

Lowest mode: "fundamental" Second mode of string Third mode of string freq. f₁ f₂ = 2 x f₁ f₃ = 3 x f₁

demo: modes of string example: find frequencies of modes

oscillations called "harmonics" if frequencies are exact multiple of fundamental