First exam: Monday October 8, 2001 12:05 lecture: Room 1300 Sterling 1:20 lecture: Room 125 OLD Biochem Bldg 420 Henry Mall (corner Univ Ave)

 Review Sessions in Room 3335 Sterling Emre 1-3 pm Saturday, October 6
Santhosh 1-3 pm, Sunday, October 7
Eva 3-5 pm Sunday, October 7

the exam covers: Homework Lab through Strings Study Guide

the material is covered in Ch. 2-4 in "The Science of Sights

and Sounds" on reserve at Helen C. White and at Physics library

PH 109

Fundamental frequency f₁

changing the frequency: • change length (guitar, violin etc):shorter $L \rightarrow$ higher pitch • change tension (tuning): higher $T \rightarrow$ higher pitch • change mass per unit length: heavier string → lower pitch

Lecture 8 Strings, Pipes

Vibration of Strings:

10/1/2001

T: tension in N L: length in m mass per unit length in kg/m

Examples: (sent to class by e-mail include answers)

for 50 N tension

frequency)?

of 200 Hz.

2.60 cm long string plays a certain tone. What length will produce a tone an octave higher (double the

3. A cello string is 80 cm long and has a mass of 1.2 g. a) Find the mass per unit length. **b)** Find the tension required to obtain a frequency

1. string frequency 300 Hz for T = 40 N. Find frequency

HIGHER MODES OF STRING

An oscillation is called a "MODE" if each point makes simple harmonic motion

first mode: freq. f₁ """ "" "fundamental"

2nd mode: freq. $f_2 = 2f_1$

 3^{rd} mode: freq. $f_3 = 3f$ "second overtone"

wave on string is reflected at both ends of the string **SUPERPOSITION of waves travelling in** opposite directions makes "standing wave"

2 waves travelling in opposite directions (Quicktime Movie) 2 waves with superposition (Quicktime Movie) Only superposition (Quicktime Movie)

Standing Waves

• The overtones are called "HARMONICS" if they their frequencies are whole-number <u>multiples</u> of the fundamental

• when a string is bowed or plucked, many modes oscillate at the same time (shape of string: superposition of modes!)

demos: shape of string; tone from different modes

• musicians call the sound made by the different modes the "PARTIALS" of the tone

Harmonics and Partials

2nd harmonic has belly where string is plucked: STRONGEST 4th harmonic has NODE where string is plucked: ABSENT 8th harmonic ... ABSENT amplitude they have at pt. where plucked.

example: pluck string at 1/4 point from end. which harmonics will be strong? which harmonics will be absent?

<u>other harmonics</u>: more or less present, depending how much

