APS-DNP 2004 Session DA:
Probing the Gluonic and Quark Structure of Matter
DA1. First Experiments with a Polarized Hydrogen Jet Target in RHIC

Willy Haeberli
Department of Physics, University of Wisconsin-Madison

Measuring the Polarization of High-Energy Protons

WHY?
HOW?
What accounts for the spin of the nucleon?

The (old) proton spin puzzle:
Only \((20\pm4)\%\) of proton spin is accounted for by spins of quarks and antiquarks.

DIS of polarized HE leptons \((e,\mu)\) from polarized nucleons at SLAC, CERN, HERA:

Good agreement with two very different experimental methods........
COMPASS polarized LiD target

- **Target-Containers with opposite polarization**
 - 2 60 cm long Target-Containers

- **3He – 4He Dilution refrigerator (T~50mK)**
 - Superconductive Solenoid (2.5 T) Dipole (0.5 T)

- **Spin combinations:**
 - 1
 - 2

- Reversed every 8 hours

- **Target pol reversed every 8 hours**

- **Parameters:**
 - $E_\mu = 160$ GeV, $p_B \sim -76\%$
 - $1.8 \times 10^7 \mu^+/\text{sec (time ave)}$
 - Polarized LiD-target, $p_T \sim 50\%$
 - Luminosity: $\sim 5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

- **Polarization:** $\sim 50\%$

- **Dilution:** 40%
HERMES internal target

- Pure polarised gas targets: H, D, target
- Polarisation: $p_T \sim 85\%$
- Target thickness 10^{14} H/cm^2
- Luminosity: $6 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ (D @ 50 mA)
- \rightarrow spin reversal every 120 sec

Factor 100 gain from use of “storage cell”
(S. Price)

![Diagram of polarised H,D injection system]
Gluons: key contributor to the proton spin?

\[\frac{1}{2} = +\langle S_q \rangle + \langle S_g \rangle + \langle L_{q,g} \rangle \]

0.1 Gluon? Orbital?

\[\langle S_g \rangle = \int_0^1 dx \Delta g(x, Q^2) \propto \frac{1}{\alpha_s(Q^2)} \text{ in QCD} \]

\[\langle S_g \rangle = +0.3 \quad \text{(Rho et al., chiral bag)} \]
Gluons: Measurements of $\Delta G/G$

from F. H. Heinsius, COMPASS Collab - DIS April 2004

PHENIX and STAR at RHIC will measure ΔG by collisions of longitudinally polarized HE protons - $A_{\perp\ell}$

RHIC: c.m. energies up to 500 GeV
RHIC experiments will measure ΔG

$$A_{LL} = \frac{1}{P_{\text{beam}}^2} \frac{N_{\downarrow\uparrow} - N_{\uparrow\uparrow}}{N_{\downarrow\uparrow} + N_{\uparrow\uparrow}}$$

Colliding polarized protons couple directly to gluons (rather than via charge) - measure parton asymmetries.

Measure polarization of gluons through γ, jets, π pi’s, heavy quarks.

G. Bunce DUBNA-SPIN-03

BUT HOW DOES ONE KNOW P_{beam}?
The RHIC Complex \(50 < \sqrt{s} < 500 \) GeV

*present performance: \(L=4 \times 10^{30} \text{s}^{-1} \text{cm}^{-2} \), \(P_{\text{beam}} \sim 40\% \)
Measuring polarization of proton beam

\[\sigma_{L,R} = \sigma_0 (1 \pm A(\theta)P) \]

"asymmetry" \[\varepsilon = PA = \frac{N_L - N_R}{N_L + N_R} \]

Reverse P to eliminate instrumental asymmetry

\[\varepsilon = PA = \frac{R - 1}{R + 1} \text{ with } R = \sqrt{\left(\frac{N_L/N_R}\right)^\uparrow} \]

• What mechanism is sensitive to P at high energy?
• Need to know analyzing power A.
Mott (1929), J. Schwinger (Phys. Rev. 73, 1948)

“It is the purpose of this note to suggest a second mechanism for polarizing fast neutrons - the spin-orbit interaction arising from the motion of the neutron magnetic moment in the nuclear Coulomb field.”

Spin-orbit coupling:

\[\vec{\mu} \cdot \vec{B} \rightarrow \vec{\ell} \cdot \vec{s} \]

Analyzing power in small-angle neutron scattering….
Coulomb-nuclear interference ("CNI")

Phil. Mag. 1, 175 (1956)

XV. The Scattering of High Energy Neutrons by a Coulomb Field

By R. G. P. Voss* and R. Wilson†
The Clarendon Laboratory, Oxford‡

[Received October 28, 1955]

differential cross sections averaged over polarization. The data are compared with the theoretical curve normalized to unity at 1/3°.

g a beryllium target at 26°, plotted vs. the theoretical curve, normalized to 1.0

U(n,n)U
100 MeV
A_N vs momentum transfer

Polarized protons from Hyperon decay (low rate)

FIG. 8. A_N data for pp elastic scattering as a function of \(-t\). The solid curve is the theoretical prediction [2] in the Coulomb-nuclear interference region. \(\bigcirc\) is measured at 185 GeV/c [24] and the results of this measurement are indicated by \(\bullet\). The other data points are measured at 300 GeV/c (cross) and 100 GeV/c (diamond) [16], 176 \(\pm\) 12 GeV/c (triangle) [17], and at 150 GeV/c (black square) [15], using a polarized target.
CNI Analyzing Power p-Carbon Scattering

\[M(\theta, \phi) = g(\theta) + h(\theta)(\hat{n} \cdot \vec{\sigma}) \]

no hadronic spin-flip

with hadronic spin-flip

calibration only at 22 GeV/c
small \(A_N \)
Scale uncertainty \(\sim 30\% \)
Unknown energy dependence
But large count rates

need for accurate absolute \(A_N \) measurement
Beam Polarization Calibration

Elastic scattering of IDENTICAL particles (pp):
beam analyzing power = target analyzing power
(Change in reference frame)

- Measure asymmetry \(\varepsilon_{tgt} \) when unpolarized beam is scattered from polarized target of KNOWN polarization \(P_t \) - measures \(A \)

- Measure asymmetry \(\varepsilon_{beam} \) when polarized beam is scattered from unpolarized target

Both experiments done simultaneously

\[
\varepsilon_{tgt} = P_t A
\]

\[
\varepsilon_{beam} = (-) P_b A
\]

\[
P_b = P_t \left(\frac{\varepsilon_{beam}}{\varepsilon_{tgt}} \right)
\]
The Polarized Target - Principle

\[|B| \propto r^2 \]

\[\vec{F}_r = \pm k\vec{r} \]

acceptance angle \(\alpha \)
and Practice

- Cooled dissociator nozzle to reduce v and v-spread.
- Recombination: dissociation depends on gas flow and nozzle temp
- Beam attenuation: rest gas and intrabeam scattering
- Magnet design (taper, lengths, z-position) needs:
 - velocity distribution, dissociator H output vs gas flow, nozzle T
 - beam forming geometry
- differential pumping

OPTIMIZATION: COMPUTER MODELLING
H-jet sextupole separation magnet system.
The Polarized H-jet at RHIC

Hyperfine state
(1),(2),(3),(4)

H₂ dissociator

separation magnets (sextupoles)

(1),(2)

RF transitions

Pz⁺ : (1),(4) (transition (2) → (4))

Pz⁻ : (2),(3) (transition (1) → (3))

Beam intensity:
(1.2±0.2)×10¹⁷ H/s

Holding field magnet 1.2 kG

Polarimeter

Focusing magnets (sextupoles)

Recoil Chamber Silicon Det.
Nuclear polarization of H-atoms

Efficiency of RF transitions: \((99.7\pm0.2)\%\)

ideal proton polarization for \(B=1.2\text{kG}\): \(P = 0.960\)

plus \(~3\%\) dilution from \(\text{H}_2\)

\[P = 0.924 \pm 2\% \]

bunch-field depolarization <0.1\%
Scattering Chamber (top view)

Target thickness: $(1.3 \pm 0.2) \times 10^{12} \text{ H/cm}^2$
Recoil Detectors

Recoil detectors (blue beam):

- 6 detectors 70x64 mm
- 16 strips (5 mrad each)

Measure

- **Energy:** 1~7MeV
 - resolution < 50 keV
- **TOF:** 16~80 ns
 - resolution < 2 ns
- **Angle:** 10~100 mrad (89.5 - 84°)
 - resolution 5 mrad
Recoil energy vs. time-of-flight
Identifying recoil protons vs recoil angle (=strip #)

TOF vs T_R Si detector of first 8 channels

Recoil energy strip by strip

ΔTOF < +/-8 ns

analysis

241Am

1 Strip # 16
pp Analyzing Power 100 GeV/c

A_N vs. momentum transfer

pp elastic 100 GeV/c
FNAL E704 200 GeV/c

no hadronic spin-flip

data to analyze
Polarization of 100 GeV Beam

\[P_{\text{beam}} = P_{\text{target}} \left(\frac{\varepsilon_{\text{beam}}}{\varepsilon_{\text{target}}} \right) = 0.39 \pm 0.03 \text{ (stat)} \]

\[\sim 10^6 \text{ pp events} \]

Plans:

- study systematic errors and improve statistics for absolute calibration accuracy \(\pm 5\% \)
- analyze wider t-range to study pp interaction
- bunch field depolarization with 110 bunches
- improved measurement of H\(_2\) contamination of H-beam
- measure beam polarization at injection
- measure blue and yellow beam polarization
H-Jet collaborators:

Wisconsin: T. Wise, M. Chapman, W.H.
BNL: A. Bravar, G. Bunce, R. Gill, Z. Li,
 A. Khodinov, A. Kponou, Y. Makdisi,
 W. Meng, A. Nass, S. Rescia, A. Zeler
Kyoto: H. Okada, N. Saito
ITEP-Moscow: I. Alekseev, D. Svirida
IUCF: E. Stephenson
RIKEN-BNL: O. Jinnouchi,
Rikkyo U: K. Kurita
ANL: H. Spinka
1.26 km
pp Analyzing Power 100 GeV/c

Recoil angle: 89.5°
Recoil energy: 0.53 MeV
5.3 MeV
Plans

Plans:
• improve statistics, study systematic errors for absolute calibration accuracy $\pm 5\%$
• analyze wider t-range to study pp interaction
• bunch field depolarization with 110 bunches
• improved measurement of H_2 contamination of H-beam
• measure beam polarization at injection
• measure blue and yellow beam polarization
RHIC pp accelerator complex

Absolute Polarimeter (H jét)

p-C Polarimeters

$L=4 \times 10^{30} \text{s}^{-1} \text{cm}^{-2}$, $P_{\text{beam}} \sim 40\%$

BRAHMS & PP2PP (p)

Siberian Snakes

0.7$ \times \ 10^{11}$ pol. protons/bunch

56 bunches

PHENIX (p)

STAR (p)

Spin Rotators

Partial Siberian Snake

Strong AGS Snake

Pol. Proton Source

500 μA, 300 μs

LINAC

BOOSTER

200 MeV Polarimeter

Rf Dipoles

AGS

AGS pC Polarimeters

AGS Internal Polarimeter

AGS
RHIC experiments will measure ΔG

$$A_{LL} = \frac{1}{P_{\text{beam}}^2} \frac{N^{\uparrow \uparrow} - N^{\uparrow \downarrow}}{N^{\uparrow \downarrow} + N^{\uparrow \uparrow}}$$
HERMES internal target

- Pure polarised gas targets: H, D,
- Target polarisation: $p_T \sim 85\%$
- Luminosity: $6 \times 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1} (\text{D @ 50 mA})$
- \rightarrow Spin reversal every 120 sec

Factor 100 gain from use of storage cell
The Data (a sample)

Reconstructed
Missing Mass²

FWHM ~ 0.1 GeV²

Inelastic
Threshold

Simulation
MM²

FWHM ~ 0.1 GeV²
What accounts for the spin of the nucleon?

DIS of polarized HE leptons from polarized nucleons at SLAC, CERN, HERA:

The (old) proton spin puzzle:
Only ~20% of proton spin is accounted for by spins of quarks and antiquarks

QCD analysis of Q^2 dependence:

Two experimental methods:
- thick solid polarized target + low intensity e or μ beam
- Thin polarized gas target + high intensity beam

$\Delta u + \Delta d + \Delta s \approx 0.20 \pm 0.04 \pm \ldots$
Comparison with some models (Not Fitting)

preliminary

(Re r5= -0.02)

Non-hadron spin flip

(Re r5= +0.02)
CONCLUSIONS:

- Demonstrated feasibility of accurate beam polarization calibration at high energy
- Calibration of p-C polarimeter
- Measurement of pp A_N (8 angles, $\pm \sim 10\%$)
- H-jet does not interfere with p-beam lifetime
- 3% measurement requires <200 hrs with improved beam intensity
- Method covers entire energy range of RHIC

One important step towards a precise determination of ΔG...
RHIC experiments will measure ΔG

\[A_{LL} = \frac{1}{P_{beam}^2} \frac{N_{↑↑} - N_{↑↓}}{N_{↑↑} + N_{↑↓}} \]

BUT HOW DOES ONE KNOW P_{beam}?

- PHENIX
- STAR

- Axial Field
- Solenoidal field
\[p \rightarrow g + gg \rightarrow \gamma \gamma \rightarrow \pi^0 + \text{jets} \]
Polarization of 100 GeV Beam

\[P_{\text{beam}} = P_{\text{target}} \left(\frac{\epsilon_{\text{beam}}}{\epsilon_{\text{target}}} \right) = 0.40 \pm 0.03 \]

Eventual goal of calibration: ±3%

Plans:
- analyze wider t-range to study pp interaction
- improve statistics
- bunch field depolarization with 110 bunches
- improved measurement of H\(_2\) contamination of H-beam
- measure beam polarization at injection
- measure blue and yellow beam polarization
Forward scattering particle ID; Correlation of Energy and position

TOF vs T_R Si detector of 16 channels

$T_R \approx 2m_p \sin \theta_{R}^{2} \Rightarrow 2m_p c h \#^{2}$

$\Delta TOF < +/-8 \text{ ns}$

analysis

^{241}Am
The Polarized Target - Principle

\[|B| \propto \alpha r^2 \]
\[\vec{F}_r = \pm k\vec{r} \]

acceptance angle \(\alpha \)
The Polarized Target - Principle

Dissociator

Sextupole Magnet

acceptance angle α
H-Jet Design Features

- Sextupoles: rare-earth permanent magnets (gradient up to 6 T/cm)
- Magnet geometry:
 - 2 magnet groups reduce chromatic aberrations
- magnet gaps reduce gas attenuation
- taper increases acceptance
- RF transitions of high efficiency
- very uniform guide field to avoid bunch field depolarization
- Field shaping for adiabatic transport

permanent magnet sextupole
pole tip field 1.5T

responsible for design: T. Wise UW
H-jet sextupole separation magnet system.
The Polarized Target - Principle

\[|B| \propto r^2 \]

\[\vec{F}_r = \pm kr \]

acceptance angle \(\alpha \)

HYDROGEN

- \(m_I \)
- \(m_F \)
- \(m_I = \pm \frac{1}{2} \)
- \(m_F = \pm \frac{1}{2} \)

PROTONS

- \(P \)
- \(\chi = \frac{B}{B_c} \)
The Polarized Target - Principle

\[|B| \propto r^2 \]

\[\vec{F}_r = \pm k \vec{r} \]

acceptance angle \(\alpha \)
H-Jet Design Features

- Sextupoles: rare-earth permanent magnets (gradient up to 6 T/cm)
- Magnet geometry:
 - 2 magnet groups reduce chromatic aberrations
- magnet gaps reduce gas attenuation
- taper increases acceptance
- RF transitions of high efficiency
- very uniform guide field to avoid bunch field depolarization
- Field shaping for adiabatic transport

permanent magnet sextupole
pole tip field 1.5T

responsible for design: T. Wise UW