Positron Emission Tomography (PET) at Madison

Alexander K. Converse1, Andrew D. Roberts2, Robert J. Nickles1, Paul M. DeLuca, Jr.1

1University of Wisconsin - Madison
2University of Manchester

Willy Fest, Madison, 10 June 2005
Technology
Applications
35 years of PET tracer production at Wisconsin

- EN Tandem
 - Noblesse of Willy, HTR, HHB, PQ
- 11 MeV cyclotron
- NEC tandem
- A. Converse UW - Madison

-

- 5FU, 15O, 13NH$_3$, 18F, FDG,..

-

-

-

-

-

-

-

-

-

- several dozen PET tracers in research use

- FDG goes commercial
Space
Tracers

Basics
- Blood flow: $[^{15}\text{O}]\text{H}_2\text{O}$, $[^{17}\text{F}]\text{CH}_3\text{F}$
- Blood volume: $[^{11}\text{C}]\text{CO}$
- Oxygen extraction: $[^{15}\text{O}]\text{O}_2$
- Glucose metabolism: $[^{18}\text{F}]\text{FDG}$
- pH: $[^{11}\text{C}]\text{CO}_2$
- Bone: $[^{18}\text{F}]\text{F}^-$

Dopamine
- Synthesis: $[^{18}\text{F}]\text{FDOPA}$, $[^{18}\text{F}]\text{FMT}$
- Transporters: $[^{11}\text{C}]\text{MP}$, $[^{11}\text{C}]\text{DTBZ}$
- Receptors: $[^{11}\text{C}]\text{SCH23390}$, $[^{11}\text{C}]\text{RAC}$, $[^{18}\text{F}]\text{FAL}$, $[^{18}\text{F}]\text{desFAL}$

Serotonin
- Transporter: $[^{18}\text{F}]\text{ADAM}$
- Receptors 1A: $[^{18}\text{F}]\text{MPPF}$

More...
- Tumors: $[^{18}\text{F}]\text{Iressa}$, $[^{124}\text{I}]\text{NM404}$, $[^{62}\text{Cu}]\text{ATSM}$, $[^{18}\text{F}]\text{FLT}$
- Microglial activation: $[^{11}\text{C}]\text{PK11195}$
- Anesthesia: $[^{18}\text{F}]\text{halothane}$
- Phantoms: ^{90}Y, ^{76}Br, ^{64}Cu, ^{34m}Cl
Dopamine Release

(a) Image of brain regions labeled as Cd and Pu.

(b) Graph showing time (minutes) on the x-axis and Ci/cc on the y-axis. The graph includes data points and lines labeled as pre and post with a symbol for amph. Legend includes markers for Str and Cb.

(c) Bar chart showing percentage changes in BP for AW25*, AV51, AW21, and AW92.
Dopaminergic Neuromodulation

![Diagram of dopaminergic systems and molecular interactions](image)

The diagram illustrates the flow of dopaminergic molecules between the plasma and tissue compartments, with free and bound states represented by C_p, C_F, and C_B respectively. The reactions are denoted by the rate constants k_1, k_2, k_3, and k_4. The graphs show the activity over time for different conditions, with labels a, b, c, and d indicating specific scenarios.
PET People

Jerry Nickles, Ph.D.
Onofre DeJesus, Ph.D.
Dhanabalan Murali, Ph.D.
Leo Flores II, M.D., Ph.D.
Alex Converse, Ph.D.
Jon Nye, M.S.
Miguel Avila-Rodriguez, M.S.
Rachel Bartlett, B.S.
Corinne Dallas, B.S.
Nick Vandehey, B.S.

Dave Abbott, DVM
Jesus Bianco, M.D.
Richard Davidson, Ph.D.
Paul DeLuca, Ph.D.
Ian Duncan, DVM
Sean Fain, Ph.D.
Jim Holden, Ph.D.
Ned Kalin, M.D.
Steve Kornguth, Ph.D.
Ross Levine, M.D.
Scott Perlm, M.D.
Joanne Paul-Murphy DVM
Mary Schneider, Ph.D.
Steve Shelton, Ph.D.
Charles K Stone, M.D.
Patrick Turski, M.D.
Tom Wallhaus, M.D.
Jamey Weichert, PhD
Jim Zagzebski, Ph.D.

David Dick, PhD ('04)
Michael Schueller, PhD ('01)
Michael Taylor, PhD, MD ('98)
Tim Mulnix, PhD ('98)
Andy Roberts, PhD ('95)
Terry Oakes, PhD ('95)
Brad Christian, PhD ('94)
Chuck Martin, PhD ('92)
Marty Satter, PhD ('91)
John Sunderland, PhD ('90)
John Votaw, PhD ('88)
Gary Hutchins, PhD ('84)
Margaret Daube-Witherspoon, PhD ('83)
Richard Hichwa, Ph.D ('81)
Mark Madsen, PhD ('80)
Willy

Enthusiasm

Focus

Rigor

“Do the simple experiment first”