Parity Violation Experiments at SIN (as viewed by a graduate student)

R. Balzer¹, W. Haeberli², R. Henneck¹, S. Jaccard³, S. Kistryn¹,
Ch. Jacquemart^{1,*}, J. Lang¹, J. Liechti¹, Th. Maier^{1,*}, R. Müller¹,
F. Nessi-Tedaldi^{1,*}, W. Reichart⁴, T. Roser^{1,*}, M. Simonius¹,
J. Smyrski¹, J. Sromicki^{1,2}, Ch. Weddigen⁵

¹ETHZ, ²Wisconsin, ³SIN, ⁴Zürich, ⁵Karlsruhe *Graduate student

Thomas Roser Haeberli Fest June 10, 2005

Parity violation in nucleon-nucleon interaction

Electro-weak part of nucleon-nucleon interaction

In one-boson exchange model:

Weak meson-nucleon coupling constants determined by standard model

Calculable due to short range of W,Z interaction

Desplanques, Donoghue and Holstein give "best value" and "range" for π , ρ , ω coupling constants:

 $f_{\pi}, h_{o}^{0}, h_{o}^{0}, h_{o}^{1}, h_{o}^{1}, h_{o}^{1}, h_{o}^{2}$

Parity Violating Nucleon-Nucleon Potential

Parity violation in nuclear scattering at ~ 45 MeV

$$A_z = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

- Nuclear scattering of simple systems with less nuclear structure uncertainty
- Elastic pp scattering: $A_z = (-1.50 \pm 0.22) \times 10^{-7}$

$$A_{z} = .074h_{\rho}^{0} + .065h_{\omega}^{0} + .074h_{\rho}^{1} + .065h_{\omega}^{1} + .030h_{\rho}^{2}$$

• Elastic p α scattering: $A_z = (-3.34 \pm 0.93) \times 10^{-7}$

$$A_{z} = -.34f_{\pi} + .140h_{\rho}^{0} + .059h_{\omega}^{0} + .047h_{\rho}^{1} + .059h_{\omega}^{1}$$

• pd scattering (including part of break-up): $A_z = (+0.4 \pm 0.7) \times 10^{-7}$

- To reach precision of better than 10⁻⁷:
 - > Need about 10^{16} events, which is too many for counting individual events \rightarrow integrating detectors
 - At low energy detection of scattered particles is preferred over transmission because the required thick target affects the beam too much
 - > 100 atm circulating gas target to maximize luminosity and minimize thermal effects.
 - Scattering angle and energy cuts using target vessel walls. For pα this allowed to select only elastic scattering.

Experimental layout

NATIONAL LABORATORY

Facilities at SIN, now PSI

- Systematic error has to be less than a few 10⁻⁸
- Good training ground for future spin physicists (needs patience and care and enthusiasm for flipping the spin!)
- Basic approach:
 - > Modulate every possible parameter artificially and measure resulting effect on $A_z \rightarrow$ sensitivities
 - Measure actual helicity correlated parameter modulation during experiment
 - Calculate correction/error from sensitivity and measured modulation
- Systematic error sources:
 - Intensity modulations
 - Position modulations
 - > Beam width modulations
 - Transverse polarization (0th, 1st, 2nd moment)
 - Energy modulations

"Haeberli plot": Comparison with PV y decays

NATIONAL LABORATORY

Energy dependence of p.v. partial wave amplitudes ${}^{1}S_{0} - {}^{3}P_{0}$ and ${}^{3}P_{2} - {}^{1}D_{2}$ are given by strong phases \rightarrow only two p.v. observables

Energy dependence of parity violation in pp total cross section

- > ANL measurement of p-H₂O indicates fast rise of A_z
- Measurement of A_z in pp total cross section using stored polarized beam and internal target measuring helicity-dependent beam lifetime (S. Vigdor)
- Possible experiment up to 250 GeV with polarized beam at RHIC

