Polarization Experiments for a Rainy Day (or Decade)

Two Gedanken experiments teetering on the brink of feasibility ...

> Testing pp parity violation at high energies via the helicity-dependence of a stored proton beam lifetime

> Exploiting time-reversal invariance to study lowenergy π^{0} -n scattering and isospin violation

With thanks to Willy thinking up "crazy"

ng me to the fun of

Happy Birthday, Willy!

> S. Vigdor, WillyFest, June 10, 2005

Is Parity Significantly Violated in High-Energy pp Scattering?

Measure, e.g., via dependence of total cross section on beam helicity

> The ZGS anomaly: mistake or the start of something big?

Goldman & Preston: weak interactions modify L-handed, but not Rhanded, quark interactions (the two remain separated by QCD's chiral symmetry), leading to energy-dependent parity violation in pp.

> Normalizing to ZGS result, they predict effects ~ 10⁻⁴ at RHIC energies!

The Concept: Measure the Helicity-Dependence of the Lifetime of a Stored Polarized High-Energy Beam

> At multi-GeV energy, stored beam lifetime can be dominated by nuclear interactions in a gaseous internal target of sufficient thickness

> E.g., target with ~10¹⁷ p/cm² should $\Rightarrow \tau \sim$ 3000 s at RHIC.

¬ Precise measurement of I(t) is then equivalent to folding traditional transmission measurement of σ_{tot} into a ring/spectrometer !

βγ> Locate target opposite a single full Siberian Snake ⇒ only longitudinal spin component stable (transverse components flip on alternate passes, reducing syst. errors!)

¬ Inject beam with opposite spin direction for alternate bunches and/or flip stored beam spin periodically via rf techniques.

What Level of Uncertainty is Achievable?

> At IUCF Cooler, we improved resolution of beam current monitor over transformers magnetically coupled to beam by ~2 orders of magnitude, using rf-tuned electrostatic pickup AC-coupled to beam

> Comparable absolute resolution on beam current measurement at RHIC would dominate precision over counting statistics on lost particles for measurement times > 12 s, $\Rightarrow \varepsilon_{\tau}/\tau \sim 10^{-6}$ per fill

¬ Systematic uncertainties smaller than 10^{−6} seem achievable, but it's a whole new ballgame...

What Else Could One Measure by Same Technique?

Other interesting spin-dependent total cross section measurements require polarized target as well as beam. Then it may be harder to arrange for luminosities that dominate beam lifetime (over beam interactions with non-target material). If this can be achieved, one could measure:

• $\Delta \sigma_L$, $\Delta \sigma_T$ for pp scattering

*parity-even, time-reversal-odd forbidden spin-dependence in pd scattering

Looking Through the Wrong End of the Telescope?

> Non-em sources of CSB arise from u-d quark mass difference

> Latest lattice QCD/chiral extrapolation results ⇒ $m_u \approx 1.7$ MeV, $m_d \approx 3.9$ MeV ⇒ $\varepsilon \equiv (m_d - m_u)/(m_d + m_u) \approx 0.4$ at the current quark level

> Denominator, but not numerator, greatly increased by dynamical chiral symmetry breaking (constituent quarks)

> Weinberg; van Kolck; Fettes & Meissner \Rightarrow can see effect at $\sim \varepsilon$ level by comparing low-energy π^0 -n and π^0 -p scattering. Thanks!

How to Measure π^{0} -n Scattering?

> Must rely on final-state interactions (FSI) to study $\pi^0 N$ – how do we make sure FSI of interest dominates observables?

Best existing (1972) measurement of $P_v^{\ p}/P_z^{\ \Lambda}$ for π -p is -0.094 ± 0.060. > For $\pi^0 p$ use $\gamma p \rightarrow \pi^0 p$ below the opening of the threshold for the dominant $\pi^+ n$ channel.

¬ A "crazy" idea for $\pi^0 n$: look at time-reversal-odd triple-spin correlation in the weak decay of a polarized Λ :

$$\vec{\Lambda} \rightarrow \pi^0 \vec{n}$$

e.g., for Λ spin in z-direction and neutron emission in x-direction in Λ rest frame, measure P_v^{n} .

¬ Assuming time-reversalinvariance, effect arises purely from s- and p-wave π N strong FSI phase shifts @ 37.2 MeV:

$$P_y^n/P_z^\Lambda = -\alpha \tan(\delta_s - \delta_p)$$

 α = normal Λ decay asym. = 0.642

Tagging Λ 's of Known Direction and Polarization:

Wish List:

- 1) 2-body reaction with charged tag for Λ , so don't need to reconstruct from neutral particle decay
- 2) Large polarization transfer from beam or target to Λ for experimental control of polarization direction
- 3) Hopefully known Λ polarization to avoid having to measure it from decay asym.

Exploiting the Nice Features of PhotoProduction Near the KA Threshold

> Dominance of $S_{11} N^*(1650)$ resonance \Rightarrow rapid rise of σ above threshold + nearly_complete_transfer of polarization from γ beam or p target to Λ

¬ Near-threshold kinematics ⇒ relatively narrow Λ energy and angle ranges in the lab: $E_{\gamma}^{\ lab}$ =960 MeV ⇒ $T_{\Lambda}^{\ lab}$ from 106 to 270 MeV, $\theta_{\Lambda}^{\ lab} \le 12.4^{\circ}$, $\theta_{K}^{\ lab} \le 28^{\circ}$

J ()	60	
	1.00	$\gamma p \rightarrow K^+ \Lambda, E_{\gamma}^{lab} = 960 \text{ MeV}$
	0.80	- Near-unity spin correlation between
	0.60	 circularly polarized photon and longitudinally polarized proton
ш	0.40	 indicates S-wave dominance and nearly complete polarization transfer
	0.20	from beam or target to outgoing Λ polarization along beam direction.
	0.03	
_	-0.01	Non-nealiaible reaction
	-0.05	- polarization will yield
<u>م</u>	-0.09	neutron vertical does not reverse
	0.00	component when the spin of beam or target
-	0.13	is flipped!
-	0.17 (36 72 108 144 18

Kinematics Permits Efficient Coverage of Λ Decay Phase Space

 A polarimeter covering ~15° in the lab would accept a large fraction of daughter neutrons from all produced Λ's

¬ The neutron energy range (~100—250 MeV) is one for which we know how to make efficient polarimeters

 ¬ Could "scibath" technology (3D fiber grid embedded in liquid scint.) proposed by Hans-Otto Meyer and Rex Tayloe for

 v tracking be adapted to improve the state of the art in n polarimetry?

Here's the Rub...

Need ~10⁹ circularly polarized photons/s @ 1 GeV [TUNL HI_{γ}S phase n?] on ~10²⁴ p/cm² target for ~10³ Λ /s !

But that's not the rub – that just means it's for a rainy decade in the future...

Time reversal violation provides an inseparable background !

I've had less interesting backgrounds...

Λ weak decay subject to ΔI = _ rule ⇒ don't get 'free' isoscalar $[\sqrt{2/3} f^{I=3/2} + \sqrt{1/3} f^{I=1/2}] \pi^0$ -n scattering, but I = _ dominated scattering. Unfortunately, the large predicted CSB arises from chiral suppression of the isoscalar scattering amplitude sum in the denominator (i.e., from cancellation between I = 3/2 and I = _ amplitudes). If truly I = _ and isospin conserved (we know it's not), then π⁻p and π⁰n channels should give identical triple-spin coefficients. But unclear how large the violation might be.

That's the rub! Time for a beer!