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Fractional Band Filling in an Atomic Chain Structure
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A new chain structure of Au is found on stepped Si(111) which exhibits a 1=4-filled band and a pair of
� 1=2-filled bands with a combined filling of 4=3. Band dispersions and Fermi surfaces for Si(553)-Au
are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems
is determined using a tight binding fit. The fractional band filling makes it possible to preserve
metallicity in the presence of strong correlations.
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FIG. 1. Angle-resolved photoemission data of the band dis-
persion (c) and Fermi surface (b) of the Si(553)-Au chain
structure. The Brillouin zone is given in (a), together with a
tight binding fit to the Fermi surface. Three metallic bands dis-
perse through the Fermi level (EF � 0), two of them about 1=2
tron per unit cell, which then splits into a spinon and
holon band. The energy scale of this many-electron effect

filled and one 1=4 filled. High photoemission intensity is shown
dark. kx is along the �1 1 0� chain direction and ky along �1 1 2�.
One-dimensional physics is elegant because of its
mathematical transparency. Many problems can be solved
analytically, and questions that are too difficult to address
in higher dimensions become accessible [1]. Electrons are
predicted to exhibit exotic, if not paradoxical properties
in one dimension [1–5], such as the separation of spin and
charge in a one-dimensional metal. Even the concept of a
single electron breaks down. Electrons cannot avoid each
other when moving along one line, thus becoming excited
collectively.

One might think that the ultimate one-dimensional
metal would be a single string of atoms suspended freely
in space. However, according to early arguments by
Peierls, the atoms in such strings form pairs and open
up a band gap. Recently, it has become possible to produce
metallic chains of metal atoms that line up parallel to the
step edges of vicinal silicon surfaces [5–12]. X-ray dif-
fraction from the Si(557)-Au structure shows that gold
atoms are incorporated rigidly into silicon lattice posi-
tions [12] without detectable Peierls distortion. While the
Au atoms are locked to the Si substrate, the metallic
electrons at the Fermi level are decoupled from the sub-
strate because their energy lies in the band gap of Si.

Spin-charge separation has been suggested already [8]
in Au chains on Si(557)-Au. Although this interpretation
has been ruled out since [9], there is ample room for spin-
charge separation to occur in other chain structures if the
coupling parameters can be tuned [13]. The key parame-
ter for metallicity is the band filling. Fractional filling is
connected with exotic phases in a magnetic field, such as
the fractional quantum Hall effect in two dimensions.
One-dimensional organic compounds (Bechgaard salts)
exhibit 1/4-filled bands that produce strongly correlated
Mott states and charge density wave phases with spinon
and soliton excitations [3,14–18].

The typical one-dimensional Tomonaga-Luttinger
model starts with a 1=2-filled band containing one elec-
0031-9007=03=90(17)=176805(4)$20.00 
can be boosted [13] by increasing the electron-electron
interaction U. Signatures of spin-charge separation may
be observable at energies comparable to the bandwidth W,
as long as U > W. In this limit, however, a 1=2-filled
band splits into a pair of insulating Hubbard bands and
requires doping in order to retain its metallicity. The
maximum carrier density is reached for a 1=2-filled
Hubbard band, which evolves from a 1=4-filled normal
band by increasing U.

We have found a chain structure of gold atoms on
silicon, which exhibits a 1=4-filled band. Two additional
bands somewhat above 1=2 filling bring the overall filling
of the three metallic bands to exactly 4=3. Angle-resolved
photoemission provides the Fermi surface [Figs. 1(a) and
1(b)], the band dispersion [Figs. 1(c) and 2(b)], and the
intra- and interchain couplings t1 and t2. The 1=4-filled
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band would be optimal for observing spin-charge sepa-
ration if the electron-electron interaction U could be
increased [13]. It turns out that U can be varied over
a wide range for Si adatom states, from U � 0:1 eV
on clean Si�111��7� 7� to U � 2:0 eV on hexagonal
SiC(0001) [19]. A substantial U � 0:8 eV has been re-
ported for chain structures as well [20], leading to a Mott
insulator for Na atoms on top of Si�111�-�3� 1�-Na.

Two chain structures of Au on stepped Si(111) are
compared in Fig. 3. The new Si(553)-Au structure exhib-
its the 1=4-filled band. The Si(557)-Au surface lacks this
band but has a similar band structure otherwise (Fig. 2).
Si(553)-Au consists of Si(111) terraces 4 1

3 rows wide with
a single broken bond at the step [Fig. 3(c)]. Si(557)-Au has
two broken bonds at the step and a terrace width of 5 2

3
rows [Fig. 3(a)]. The corresponding miscut angles from
Si(111) are 12:3	 along the �1 1 2� azimuth for (553) and
9:5	 along �1 1 2� for (557). Scanning tunneling micros-
copy (STM) shows a 1� 1 unit cell with 1� 3 vacancy
defects for Si(553)-Au [Fig. 3(d)], and a 1� 2 reconstruc-
tion with adatom defects for Si(557)-Au [Fig. 3(b)]. Both
contain a single gold chain per unit cell. We have per-
formed first principles, total energy calculations for > 40
structural models of Si(553)-Au. These indicate that gold
substitutes Si surface atoms in the center row of the
FIG. 2. Expanded E�k� photoemission data of the Fermi level
crossings for (a) Si(557)-Au and (b) Si(553)-Au. Both exhibit a
doublet of 1=2-filled bands, and Si(553)-Au an extra 1=4-filled
band.
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terrace [Fig. 3(c)]. The local bond geometry is similar
to that obtained for Si(557)-Au from total energy calcu-
lations [11,21] and x-ray diffraction [12]. The Si atoms
near the steps rearrange themselves into honeycomb
chains (not shown in Fig. 3, see [21,22]).

The gold chain structures were characterized at room
temperature by STM and low energy electron diffraction
(LEED), until they could be reproduced accurately in the
angle-resolved photoemission setup at the Synchrotron
Radiation Center (SRC). LEED was available in both
locations and was used to ensure that the surface struc-
tures were identical. The most critical part was the Au
coverage (0:24
 0:04 monolayers for Si(553)-Au and 0.2
for Si(557)-Au [8,9]). Photoemission features became
broader when departing from the optimum coverage,
but the band filling did not change. The Au evaporator
was calibrated by preparing pure Si�111�5� 2 without
7� 7 or

���

3
p

�
���

3
p

-Au admixtures [9,10]. During deposi-
tion the substrate was held at 650 	C with a post-anneal at
830 	C. Photoemission data were acquired at 160–220 K
using a hemispherical Scienta SES200 spectrometer with
simultaneous angle and energy multidetection (hv �
34 eV, p polarization along kx). A photovoltage shift of
the Fermi level needed to be taken into account at low
temperature.
FIG. 3. Comparison between the Si(557)-Au and Si(553)-Au
chain structures (top and bottom). Both contain a single Au
chain replacing the Si row at the center of the terrace. The
rearrangement of Si atoms has been omitted. The STM images
on the right exhibit 1� 2 periodicity for Si(557)-Au and 1� 1
for Si(553)-Au with 1� 3 defects. 12� 20 nm2.
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The E�kx� band dispersion in Fig. 1(c) contains three
metallic bands, all with their minima at the Brillouin
zone boundary of the 1� 1 unit cell. A closely spaced
pair of 1=2-filled bands crosses EF at kF � 0:36 �A�1 and
0:40 �A�1, about half way to the Brillouin zone bound-
ary at �=a � 0:82 �A�1. It resembles the doublet ob-
served on Si�557�-Au (Fig. 2). In addition, Si(553)-Au
exhibits a band with 1=4 filling and kF � 0:60 �A�1. The
Fermi surface in Fig. 1(b) exhibits weak two-dimensional
undulations around the straight lines that a purely one-
dimensional Fermi surface would give. The E�kx� band
dispersion in Fig. 1(c) is taken at the ‘‘neutral’’ point
(ky � 0:11 �A�1) where the undulation passes through
zero. The Fermi level crossings are very sharp, as shown
in a closeup in Fig. 2(b) (top). Their full width half
maximum is �kx � 0:03 �A�1, one of the sharpest ob-
served for any semiconductor surface and sharper than
for Si(557)-Au (Fig. 2 top). The inverse width l �
�k�1

x gives a coherence length of at least nine atom
spacings, given the limited momentum resolution of the
spectrometer. The chains in Fig. 3(c) have an average
length of nine atoms with a significant number of undis-
turbed chains reaching 30 atoms. Recently, the Si(557)-
Au chain structure has been reported to be the most
perfect chain structure because it exhibits the sharpest
Fermi cutoff ever observed in 1D systems [23]. We find
that the Fermi cutoff is actually sharper for Si(553)-Au
than Si(557)-Au.

In order to obtain accurate filling numbers we integrate
over the occupied part of k space enclosed by the three
Fermi surfaces and normalize to two electrons per band
over the full Brillouin zone. According to Luttinger’s
theorem [24] this simple box quantization method con-
tinues to be valid for an interacting electron system as
long as perturbation theory is valid. It would break down
for a Mott transition to an insulator, however. After care-
ful integration over the full Fermi surface we find all
three bands to be filled somewhat above their exact frac-
tions of 1=2 or 1=4 (Table I, first column). Combined,
however, they produce a filling of 1.338 which coincides
with the fraction 4=3 within our accuracy of 
0:015.

To quantify the one- and two-dimensional couplings
we have used a tight binding model with one-dimensional
couplings t1 and t3 to nearest and second nearest neigh-
bors along the chain and a two-dimensional coupling t2
between chains. Such a parametrization can be used in a
TABLE I. Band parameters (see text) for Au chains on stepped S
ky. The bottom of the band is Emin � E0 � 2t1  2t3. The effectiv

Filling E0 [eV] t1

Si(553)-Au 0.272 1.28 0.
0.509 0.04 0.

0.5 � 0:1657 �0:16 0.
Si(557)-Au 0.46 0.35 0.

0.54 0.01 0.
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many-electron Hamiltonian [19]. The band dispersion
and the Fermi surface are given by the following:

(i) E�kx; ky� � E0  t1�exp�ikxa�  exp��ikxa�� 
t3�exp�ikx2a� exp��ikx2a��

1
2 t2fexp�i�kxa=2 kyb��

exp�i�kxa=2 � kyb��  exp�i��kxa=2  kyb�� 
exp �i��kxa=2 � kyb��g � E0  2�t1 cos�kxa� 
t3 cos�2kxa�  t2 cos�kxa=2� cos�kyb��,

(ii) ky�kx� � b�1 arccosf�12 �EF � E0� � t1 cos�kxa� �
t3 cos�2kxa��=t2 cos�kxa=2�g.

Note that there are four closest neighbors in adjacent
chains, separated by 
a=2 in x and by 
b in y [a �
3:84 �A, b � 14:8 �A for Si(553), b � 19:1 �A for Si(557)].
First the couplings t1 and t3 are determined from the band
dispersion in Fig. 1(c) along the neutral direction ky �
�=2b where t2 does not contribute. Then, t2 is determined
by matching the oscillations of the Fermi surface. The
resulting calculated Fermi surface [Fig. 1(a)] and E�ky�
dispersion (not shown) are in excellent agreement with
experiment. The resulting values of the band parameters
are listed in Table I. For Si(553)-Au, the two 1=2-filled
bands are more one dimensional than the 1=4-filled band,
with a ratio t1=t2 � 46; 39 versus 12. And the doublet of
Si(557)-Au is even more one dimensional with t1=t2 >
70. The increase in chain spacing from 14.8 to 19:1 �A
reduces the two-dimensional coupling below the detec-
tion limit.

One can compare our results with other one-
dimensional systems that exhibit fractional band fill-
ing, such as organic Bechgaard salts [2,14,15] with 1=4
filling. Their intrachain coupling t1 � 0:3 eV is signifi-
cantly smaller than that of Au chains on silicon (t1 �
0:6–1:0 eV). The coupling ratio t1=t2 � 10 in Bechgaard
salts is exceeded by that for Au chains (t1=t2 from 10
to > 70), indicating stronger one-dimensional character
for atom chains at surfaces. Furthermore, the three-
dimensional coupling is completely absent for metallic
states in the gap of silicon, but finite in Bechgaard salts
(� 1 meV).

There is an intriguing (although by no means settled)
explanation for the fractional band filling of 4=3 and
the resulting electron count of 8=3 per 1� 1 unit cell,
again a fractional number. A 1� 3 unit cell containing
two extra Si atoms contains eight extra valence elec-
trons, i.e., 8=3 electrons when distributed over three cells
of the 1� 1 chain. The 1� 3 structure of the defects in
Fig. 3(d) demonstrates the existence of such a unit cell.
i(111). The bandwidth is Wx � 4t1 along kx and Wy � 4t2 along
e masses range from 0.3 to 0.65.

[eV] t3 [eV] t2 [eV] vF [106 m=s]

96 <0:03 0.08 0.9
73 0.065 0.016 1.0
63 0.065 0.016 1.0
77 0.10 <0.01 1.0
61 0.10 <0.01 1.0
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The remainder of the chain structure might have a 1� 3
symmetry that fluctuates on the time scale of a STM
scan (� 10�2 s=atom), analogous to the vibrating 2� 1
dimers on Si(100) which are pinned into a larger c�4� 2�
unit cell at defects. Photoemission operates on a much
shorter time scale (� 10�15 s) and can take a snapshot
of these fluctuations. Indeed, there is a filled band in
Fig. 1(c) near �1 eV with a 1� 3 (or 1� 6) periodicity.
There is no evidence of a 1� 3 period for the metallic
bands at EF. Apparently, the one-dimensional chain states
are not perturbed by the two-dimensional 1� 3 cell
where they are embedded. A similar situation exists for
Si(557)-Au, where a 1� 2 reconstruction is observed by
STM but not in the dispersion of the metallic bands. Our
model of autodoping a one-dimensional chain by a two-
dimensional reservoir surrounding it has a well-known
analog: It is a low-dimensional version of the doping
mechanism in high temperature superconductors, where
the two-dimensional CuO plane is doped by atoms in the
three-dimensional unit cell embedding it.

In summary, we have found a chain structure of Au
atoms on stepped silicon that exhibits a band near 1=4
filling, together with a fractional electron count of 8=3
electrons per 1� 1 cell. A possible (but not unique)
explanation is suggested where two extra Si atoms in a
1� 3 cell ‘‘dope’’ the 1� 1 cell of the gold chain with
8=3 electrons. A quarter-filled band makes it possible to
increase electron correlations without losing metallicity
due to a Mott-Hubbard transition. That creates an oppor-
tunity for observing large spin-charge separation effects
[13]. As a next step one could explore chain structures on
substrates with larger on-site electron-electron coupling
U, for example, on hexagonal SiC(0001), where values
of U as large 2 eV have been reported [19]. In fact, long
chains of Si dimer orbitals have been observed on cubic
SiC(100) already [25]. The possibility of arranging
atomic chains by STM [26] provides extra flexibility.
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