The Two-Dimensional Electron Gas (2DEG)

Producing a 2DEG in a Field Effect Transistor (FET)

MODFET

GaAlAs

GaAs

MOSFET

SiO₂

Si

2DEG

E_F

$U_{\text{electrostatic}}$

V_{Gate}
Triangular Potential at the Interface

- Quantized energy levels E_1, E_2, \ldots in the triangular potential

- The shaded region represents 2D electrons with extra kinetic energy (for movement \perp to the drawing, \parallel to the 2DEG).
Density of States from 2D to 3D

Approximate the 3D density of states by a sequence of 2D step functions for the quantized states E_n. A true 2D density of state is obtained only when E_F lies between E_1 and E_2, i.e. only the lowest quantum state is occupied.
Wave Functions in a Triangular Potential Well

- Inflection point at the edge of the well.
- Highest curvature at the lowest point of the well.
Practical Aspects for Producing a 2DEG

In order to occupy only the lowest quantum state \((E_F < E_2)\) one needs very low electron density (lower than in typical transistor applications). This can be achieved by making the gate less positive. Typical electron densities are \(10^{10} \text{ e}^-/\text{cm}^2\), i.e. only \(\approx 10^{-5}\) electrons per surface atom! The interface defect density has to be even lower.

Furthermore, the Fermi-Dirac cutoff needs to be much sharper than the level spacing: \(2k_B T \ll (E_2 - E_1)\) That requires either low temperature or very narrow quantum wells. Devices made with standard lithography require liquid He temperature. With nanometer devices it is possible to work at room temperature.