Skip navigation
 


 


 



Syllabus  and   Lecture Notes

Tuesday, Thursday  2:30 - 3:45 pm ,  2104 Chamberlin.

Download the 
Syllabus .

Textbook  (optional,  available in the Physics Library Reserves):
Massimiliano Di Ventra, Stephane Evoy, James Heflin, Jr., Introduction to Nanoscle Science and Technology, Springer 2004.
The book is much more detailed than the lectures, quite useful for digging deeper into specific areas.

Group projects:  Groups of about 2-4 students prepare a 20 min presentation (about 10 slides) on a topic of their choice, together with a short paper (about
4 pages, including figures and references). Each student is responsible for a specific part (which , for example for the presentation or for the paper. Download the signup sheet with suggestions for topics.

Other planned activities: 
Visits to research labs
 and possibly to a startup company in nanotechnology.
Hands-on synthesis  of nanostructures  (see  examples).
 

Lecture notes  can be downloaded below (.pdf  and .ppt),  together with other background  information.

Grading:  Choice between letter grade  (A,AB,B,…)  or  Satisfactory/Unsatisfactory (S/U),  to be made at the beginning of the semester. The letter grade will be based on the contribution to the group project.
 

Lecture 1 (pdf)
Lecture 1 (ppt)

ppt files are often
annotated
 
Overview
Logistics,  Syllabus, General theme of this class
Nanotechnology in our daily life
How small is a nanometer ?
What is special about nanostructures ?  The  dream of the modern alchemist.
Biological nanostructures
Thu. 9/3
Lecture 2 (pdf)
Lecture 2 (ppt)
 
Nanometer Length Scales
Physics:  Quantum Phenomena, Electricity, Magnetism
Chemistry:  Electrolytes, Polymers, Catalysis
Biochemistry:  From DNA and Proteins to Viruses
Tue. 9/8
Lecture 3 (pdf)
Lecture 3 (ppt)
Chap 1
Chap 2
Fabricating Nanostructures
From the Top Down:   Lithography
From the Bottom Up:  Self-Assembly
The best of both:  Directed Assembly
Thu. 9/10
Lecture 4 (pdf)
Lecture 4 (ppt)
Chap 3
Manipulating Atoms and Molecules
Moving atoms with the STM
Unwinding proteins with an AFM
Tue. 9/15
Lecture 5 (pdf)
Lecture 5 (ppt)

Forces (pdf)
 
Structure Determination 1:  Microscopy
Scanning Tunneling Microscopy (STM)
Atomic Force Microscopy (AFM)
Transmission Electron Microscopy (TEM)
Thu. 9/17 
Meet in class
 
Research Lab Visit:  Engineering Materials by Strain
Tue. 9/22
Directions
 
Visit a Nanotech Startup Company (nPoint)
Thu. 9/24
Lecture 6 (pdf)
Lecture 6 (ppt)

Reciprocal Space (pdf)
 
Structure Determination 2:  Diffraction
Principle of diffraction
Real space vs. reciprocal space
Tue. 9/29 
Lecture 7a (pdf)
Lecture 7a (ppt)
Chap 4,5,6 Carbon  in  3, 2, 1, and 0  Dimensions
3-D diamond, 2D graphite/graphene, 1D carbon nanotubes, 0D fullerenes
Fabrication and properties

Thu. 10/1
Lecture 7b (pdf)
Lecture 7b (ppt)

Band Calculations (pdf)
 
Quantum Numbers of Electrons in Solids:  Energy Bands
Carbon as example
Measuring energy bands and their density of states
Fundamental limits of electronics
Tue. 10/6
Lecture 8 (pdf)
Lecture 8 (ppt)
 
Electrons in Nanostructures
Quantum confinement in 1,2, and 3 dimensions
Quantum wells as electron interferometers
Thu. 10/8 
Lecture 9 (pdf)
Lecture 9 (ppt)
Chap 7 
Quantum Dots: Clusters, Nanocrystals, Artificial Atoms
Size-selected clusters: From an atom to a solid
Nanocrystals, catalytic particles and biocatalysts (enzymes)
Energy levels of electrons in quantum dots: Artificial atoms in 2D
Tue. 10/13
Lecture 10 (pdf)
Lecture 10 (ppt)
 
Spectroscopy of Electrons in Nanostructures
Photoelectron spectroscopy
X-ray absorption spectroscopy (XAS)
Scanning tunneling spectroscopy (STS)
Thu. 10/15
Lecture 11 (pdf)
Lecture 11 (ppt)
Chap 9
Electronics on the Nanoscale
Optoelectronics, the quantum well laser
Moore's law of silicon technology and its possible showstoppers
The CCD
Tue. 10/20
Lecture 12 (pdf)
Lecture 12 (ppt)
Chap 13
Chap 14
Magnetoelectronics (Spintronics)
Magnetic data  storage (media and reading heads)
Giant magnetoresistance (GMR), tunnel magnetoresistance (TMR)
Thu. 10/22
Lecture 13 (pdf)
Lecture 13 (ppt)
Chap 11
Single Electron Devices
Tue. 10/27
Lecture 14 (pdf)
Lecture 14 (ppt)
(Chap 2)
Chap 10
Single Molecule Electronics
Thu. 10/29
Lecture 15 (pdf)
Lecture 15 (ppt)
Chap 21
Soft Matter
Liquid crystals, polymers, biopolymers (DNA and proteins)
Base pairing in DNA, protein folding, block-copolymer phases, micelles, ...
... competition between hydrophilic and hydrophobic bonding
Cells, basement membrane, connecting neurons with transistors
Tue. 11/3 
Lecture 16 (pdf)
Lecture 16 (ppt)
 
Nanostructures in Chemistry
Heterogeneous catalysis (surface/bulk ratio)
Biocatalysts (enzymes)
Thu. 11/5
Lecture 17 (pdf)
Lecture 17 (ppt)
Chap 22
Nanostructures in Biochemistry
Biosensors, DNA microarrays
Molecular Motors, ion channels
Tue. 11/10
Lecture 18 (pdf)
Lecture 18 (ppt)
    The Energy Problem
Overview: What are the alternatives?
Thu. 11/12 
Lecture 19 (pdf)
Lecture 19 (ppt)
Chap 19 
Nanotechnology and Solar Energy
Electricity and fuel from the Sun:  Photovoltaics, photosynthesis, biofuels
Tue. 11/17

 
Electron Microscopy with Atomic Resolution
Guest lecture and lab visit, Prof. Paul Voyles. Meet in the classroom.
Thu. 11/19
Instructions (pdf)
Instructions (docx)
 
Solar Cell Synthesis Lab
Meet at the lab: 3043 Engineering Centers Building  (fancy new glass building
on 1550 Engineering Drive). Work in pairs.  Read the instructions in advance.
Contact:  Tracy Stefonek, tstefonek@wisc.edu, 263-7128
Tue. 11/24 
      
Thanksgiving Break
Thu. 11/26 

 
Presentations
Tue. 12/1

 
Presentations Thu. 12/3
    Chap 12
Single Electron Devices for Quantum Computation
Guest lecture and lab visit,  Prof. Mark Eriksson
Tue. 12/8
Lecture 20 (pdf)
Lecture 20 (ppt)
Chap 20
Plasmonics and Photonics
Thu. 12/10

 
Presentations
Tue. 12/15




 

 
Top of Page