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Abstract

We have measured the longitudinal analyzing power A of the pp™ppp 0 reaction at 375 MeV bombarding energy. Wez

find that for certain angle combinations of the outgoing particles the observed A is as large as 0.3, demonstrating thatz

sizeable longitudinal analyzing powers in reactions with multi-particle final states are possible. This result has implications
for pp parity violation experiments above the pion threshold. The observed A is dominated by the interference between sz

and p wave pions in conjunction with nucleon-nucleon P waves in the final state. q 2000 Elsevier Science B.V. All rights
reserved.

PACS: 24.70.qs; 24.80.qy
Keywords: Mesons; Polarization; Parity conservation

Experience shows that measurements of polariza-
tion observables are important in studies of reaction
mechanisms in nuclear and particle physics. In the
simplest of such experiments one measures the ana-
lyzing power A by observing the change in they

1 E-mail: meyer@iucf.indiana.edu

reaction cross section as one switches between spin
up and spin down with a beam polarized perpendicu-
lar to the reaction plane.

Analogous observables obtained with the beam
Ž .polarized either along the beam direction A orz

perpendicular to the beam direction with the polar-
Ž .ization vector lying in the reaction plane A , arex

not ordinarily measured since, if parity is conserved,
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these analyzing powers are assumed to be identically
zero. In fact, a measurement of the longitudinal
analyzing power A in, for example, p-p elasticz

scattering provides a means for detecting parity vio-
Žlation in nuclear interactions see for example Ref.

w x.1 . Observed values for the parity-violating longitu-
dinal analyzing power are of the order of A f10y7,z

i.e., very small.
It is often not understood that the A s0 parityz

constraint does not apply to reactions in which the
final state contains more than two particles and at
least two of them are detected in non-coplanar kine-
matics. In this case A may differ from zero. Sincez

the allowed angular patterns for this observable are
rather complex, one might expect that measurements
of A would provide a critical test of any reactionz

model.
In a previous attempt to measure A for a three-z

body final state reaction in non-coplanar kinematics
w x 2 Ž .2 , the reaction H p,pp n was studied with a longi-
tudinally polarized 9 MeV proton beam. The re-
ported A is consistent with zero at the level ofz

0.003. In this Letter, we present new results for Az

for the reaction pp™ppp 0 at T s375 MeV, andp

demonstrate that for this case A is large.z

The longitudinal analyzing power A is measuredz

by observing the reaction yields Y and Y withq y
beam polarization parallel or anti-parallel to the beam

Ž .momentum z-axis ,

1 Y yYq y
A s , 1Ž .z P Y qYz q y

where P is the beam polarization. The yield from az

reaction with more than two particles in the final
state depends on the experimental arrangement. Con-
sider, for instance, an experiment where two parti-
cles are detected in coincidence. We denote the

Ž . Ž .direction of the two particles by u ,w and u ,w1 1 2 2

where u is the polar angle with respect to the z-axis
and the azimuth w is measured relative to the x-axis.
The x-axis we fix so that it points horizontally to the
left of the beam and the y-axis, pointing up, com-
pletes the right-handed Cartesian coordinate frame.

The invariance of physical laws under spatial
inversion is treated formally by the parity operation

Ž .which reverses polar vectors coordinates, momenta
Žbut does not affect axial vectors spins, cross prod-

. w xucts of polar vectors . As shown in Ref. 3 , as a
consequence of parity conservation, polarization ob-
servables in nuclear reactions either remain the same
or change sign when the final state is reflected on the
x–z-plane. In particular, for the longitudinal analyz-
ing power, parity conservation requires that

A w ,w syA yw ,yw . 2Ž . Ž . Ž .z 1 2 z 1 2

Since the initial state is invariant against a rotation
around the z-axis, we can set w s0 without loss of1

generality. It is then easy to see that for coplanar
Ž . Ž .detected particles when w s0 or p Eq. 2 re-2

quires that A s0. It is also clear that A vanishes ifz z

only one particle is detected.
In the present experiment we studied the reaction

pp™ppp 0 at 375 MeV bombarding energy. The
measurement yields the momenta of both outgoing
protons, b and b , over most of the available phase1 2

space. From the center-of-mass values of b and b1 2

we deduce the kinetic energy ´ of the two protons in
their rest frame, and the canonical momenta p

1 Ž . Žs b yb the relative momentum between the1 22

. Žtwo protons and qsyb yb the pion momen-1 2
. Ž .tum , with the corresponding angles ps u ,w andˆ p p
Ž .qs u ,w . The identity of two of the outgoingˆ q q

particles restricts the range of u since we canp

always number the two protons such that u isp

between 08 and 908. Furthermore, the rotational sym-
metry around the z-axis has the effect that only one
azimuthal angle, Dw'w yw , is relevant. Thus,p q

the kinematics of the final state is described by four
numbers, u , u , Dw, ´ , all of which are known forp q

each eÕent. In the following we ignore the energy
parameter ´ which means that the reaction ampli-
tudes are integrated over ´ . Their ´ dependence is
well described by phase space, an angular momen-
tum factor and, if the outgoing nucleons are in an
S-state, by the final-state interaction between them
w x4 .

w xIn Ref. 5 it has been shown how polarization
observables in reactions with a three-body final state
can be expanded into partial waves of given angular
momentum quantum numbers. The angular momen-
tum in the final state shall be denoted by ll for thep

pp system and ll for the pion. Using spectroscopicq

notation, we label the final state accordingly as
� 4 � 4 � 4 � 4ll , ll s Ss , Ps , Pp . For beam energies belowp q
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400 MeV, these are all the angular momentum states
Ž� 4that contribute measurably to A Sp is forbiddenz

� 4 � 4for this reaction, and the partial waves Ds and Sd
� 4can only be significant when interfering with the Ss

.wave, but such terms do not contribute to A .z

Because there are only a few angular momentum
states, a partial-wave expansion yields a simple ex-
pression for A in terms of the four kinematicsz

variables, u ,u ,Dw, and ´ ,p q

s u ,u ,Dw ,´ PAb , t u ,u ,Dw ,´Ž . Ž .p q z p q

s"BŽ1. ´ sinu cosu sinu sin DwŽ .z p p q

qBŽ2. ´ sinu cosu sinu cosu sin DwŽ .z p p q q

qBŽ3. ´ sin2u sin2u sin2 Dw . 3Ž . Ž .z p q

Here, s is the differential cross section that would
be observed with unpolarized collision partners. The
q and y sign in the first term refers to the analyz-

Ž b.ing power measured with a polarized beam A orz
Ž t .with a polarized target A , respectively. Because inz

our case the colliding particles are identical, the
beam and target analyzing powers are related. This
can be seen by rotating the experiment by 1808

around the x-axis. This exchanges beam and target
and reverses the polarization. It then follows that

t Ž . bŽ .A u ,u ,Dw s yA p y u ,p y u ,y Dw whichz p q z p q
Ž . Žk .Ž .is consistent with Eq. 3 . The coefficients B ´z

Ž . w xin Eq. 3 are given by 5

BŽk . ´ s C a ,a X , zU ´ U X
) ´ 4Ž . Ž . Ž . Ž .Ýz k a a

X
a ,a

where U ,U X are transition amplitudes with a givena a

set a of initial and final quantum numbers, and the
C a ,a X , z are coefficients that arise from angular mo-k

mentum coupling. One finds that in BŽ1. products ofz
� 4 � 4 Ž2,3.a Ps and a Pp amplitude contribute, while Bz

� 4contain only Pp amplitudes. Within the first 100
MeV above threshold, the dependence of the ampli-
tudes on energy ´ is well described by the phase
space factor times p llp Pq llq, times a factor due to the
final-state interaction between the two outgoing pro-

w xtons if they are in an S state 4 .
Ž .We note that Eq. 3 indeed satisfies the parity

Ž .conservation condition of Eq. 2 , and that it is
invariant against a rotation of the coordinate system

Ž .around the z-axis, as expected. Eq. 3 is also invari-

ant against the exchange of the two observed protons
Ž .which is affected by replacing w by w qp , andp p

Ž .u by pyu .p p

This pp™ppp 0 measurement was carried out
with the Indiana Cooler storage ring. The experimen-

w xtal setup is described in Ref. 6 . The directions of
the two outgoing protons were observed in coinci-
dence by a set of four wire chambers, and their
energies were deduced from the light from a stack of
scintillators in which they were stopped. A thin
scintillator just downstream of the target provided a
start signal for a time-of-flight measurement from
which the particles were identified as protons. From
the two measured four-vectors, the center-of-mass
angles u ,w ,u and w were calculated, and thep p q q

mass m of the third particle was deduced. Events ofx

interest were selected by constraining m to a regionx

near the pion mass peak. The background under the
peak was less than 10%. The shape of the back-
ground under the peak was determined from a sepa-
rate measurement with an N target and used to2

correct the raw data. A more detailed description of
w xthe measurement can be found in Refs. 6,7 .

The experiment was carried out with a polarized
proton beam on a polarized hydrogen storage-cell
target. This makes it possible to measure both the
beam and the target analyzing power, Ab and At .z z

For technical reasons, the beam polarization Ps
Ž .P , P , P could not be oriented completely in thex y z

beam direction, in fact the longitudinal and vertical
polarization components, P and P were about ofz y

the same magnitude and there was also a small
sideways component, P . Data were acquired withx

the beam polarization in the P direction, as well as
Ž .opposite to it yP . The target polarization, on the

other hand, could be oriented either in the x- y- or
z-direction without affecting its magnitude Q. Data
were acquired with both signs for each of these
directions, "Q ,"Q , and "Q . The value of thex y z

product of beam and target polarization, P PQsz

0.265"0.004, was deduced from elastic pp scatter-
w xing, using known spin correlation coefficients 8 .

Elastic pp scattering near u s458 was measuredlab

concurrently with pion production. Since Ab and At
z z

Ž Ž ..are related see Eq. 3 , only the product P PQz

affects our results, however, it might be of interest
that the individual values that make Ab and At

z z

consistent are P s0.44 and Qs0.60.z
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Since the statistics of the present experiment do
not allow a study of a four-fold differential cross
section, we have ignored the energy variable ´ and
the polar angles u and u keeping track only of Dwp q

for each event. This is equivalent to integrating the
observables over the energy ´ , and over u rangingp

from 08 to 908 and u from 08 to 1808. The resultingq

analyzing powers as a function of Dw are displayed
in Fig. 1. The upper left panel shows the beam

b Ž .analyzing power A , obtained by evaluating Eq. 1z

with yields measured with qP and yP, while
averaging over the target polarization. The upper
right panel shows the target analyzing power At

z

obtained by averaging over the beam polarization.
The bottom row shows the target analyzing powers
At and At , measured with transÕerse target polar-x y

ization. The latter two quantities, as a function of the
rotationally symmetric Dw are expected to vanish;
this is clearly confirmed by the data. This is an
important test, since it proves that the beam analyz-
ing power, which is measured with a mixture of
transverse and longitudinal polarization components,
is sensitive only to the longitudinal component, P .z

Fig. 1. Longitudinal beam and target analyzing powers Ab andz
t Ž .A top row as a function of Dw. The curves are a fit using thez

Dw dependence expected from a partial-wave expansion of the
Ž Ž ..observables see Eq. 5 . The bottom row shows the transverse

target analyzing powers At and At . These observables vanish asx y

expected because of the cylindrical symmetry of the initial state.
This observation proves that the transverse components that are
present in the beam polarization do not contribute in the measure-
ment of Ab.z

The curves in the upper part of Fig. 1 represent a
fit, using an expression which is derived from Eq.
Ž . Ž .3 , noting that the second term in Eq. 3 vanishes
when integrating over the polar angles,

"b sin Dwqb sin2 Dw1 3b , tA Dw s . 5Ž . Ž .z 1qb cos2 Dw0

The unpolarized cross section s depends on Dw in
a way that follows from the partial-wave expansion
mentioned earlier. In addition, the blind spot in the

Žcenter of the detector because of the circulating
.beam causes a very similar Dw dependence of the

Ž .acceptance. The denominator in Eq. 5 takes both
these effects into account. The best-fit values of the
three parameters with their statistical errors are b s1

y0.162"0.012, b sy0.013"0.009 and b s3 0

y0.17"0.11. The x 2 per degree of freedom is
0.98. The resulting value for b is relatively small0

compared to unity. In addition, the term with b0
Ž .peaks where the numerator of Eq. 5 vanishes and

thus the values of of b and b are insensitive to a1 3

variation of b . We note that b is much smaller that0 3

b . The same is true for the contribution by the1
Ž .second term in Eq. 3 . This was determined by

analyzing the data for pion polar angles u in theq

forward and backward hemisphere separately. Thus,
A in this reaction is dominated by b , i.e., the firstz 1

Ž . Ž1. Ž .term with B in Eq. 3 .z

In order to be able to calculate A for any choicez

of u , u and Dw, we must relate the parameters bp q k
Ž . Žk . Ž .of Eq. 5 to the coefficients B in Eq. 3 . Sincez

the unpolarized cross section s is dominated by its
isotropic part, we can set sfs r4p . The integra-tot

tion over u and u can then be carried out, and wep q

obtain, retaining only the dominant term with BŽ1.,z

Ab , t u ,u ,Dw f" y0.619"0.046Ž .Ž .z p q

=sinu cosu sinu sin Dw , 6Ž .p p q

where the largest possible value of the product of
1trigonometric functions equals . The detector setup2

covers all of the phase space, except a hole, centered
on the z-axis which subtends a cone of about 58

opening angle. The effect of this missing part of the
acceptance was estimated, using the the dependence

Ž .of the observables on angle given in Eq. 5 , and
found to be negligible on the level of the present
statistical uncertainty.
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From the present experiment we draw three main
conclusions:

First, up until now, one might have assumed that
the inherent symmetry of the longitudinal analyzing
power would constrain the reaction dynamics such
that A becomes small in general. By measuring az

clearly identified and sizeable longitudinal analyzing
power in the reaction pp™ppp 0 we have shown
that this assumption is not justified.

Second, the present result has obvious implica-
tions for studies of parity violation in pp collisions at
energies above the pion production threshold. As an
example, such an experiment at 450 MeV is in

w xprogress at TRIUMF 9 . At this energy, the pp™
ppp 0 reaction contributes about 1% to the total

q Žcross section, and the pp™pnp reaction for which
w xthere is some indication 10 that it also exhibits a

.large A contributes about 6%. If in such an experi-z

ment the detection system is sensitive to more than
one of the final-state particles and is not perfectly
symmetric around the beam axis there is a possibility
that a parity-conserving A may contribute to thez

measured signal. Thus, at higher energies, measure-
ments of parity violation must deal with a new
source for systematic errors that is absent below the
pion production threshold.

w xThird, it has been pointed out 11 that A /0z

requires that the final state description contains an
Ž .axial vector in our case, p=q . This fact mightˆ ˆ

make the observable A sensitive to specific terms inz

the transition operator. Thus, measurements of Az

constitute an important test of possible models for
pion production in NN collisions. It is also notewor-
thy that the dominant contribution to A arises fromz

� 4 � 4an interference between Ps and Pp waves, and
� 4that any terms with Pp waves alone seem to be

unimportant.
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