Brief Reports Brief Reports are short papers which report on completed research or are addenda to papers previously published in the Physical Review. A Brief Report may be no longer than 3½ printed pages and must be accompanied by an abstract and a keyword abstract. ## Configuration of states in 210 Bi from 209 Bi (\vec{d},p) C. A. Gossett, L. D. Knutson, and P. A. Quin University of Wisconsin, Madison, Wisconsin 53706 (Received 6 November 1980) The reaction $^{209}\text{Bi}(\vec{d},p)$ has been used to study the structure of the ground state multiplet of ^{210}Bi . The cross section and vector analyzing power were measured at $E_d=12$ MeV for angles between 65° and 100°. No evidence of configuration mixing was seen in the analyzing power measurements. The cross section measurements confirm previous observations of fragmentation of the 8⁻ level at 580 keV. $\begin{bmatrix} \text{NUCLEAR REACTIONS} & ^{209}\text{Bi}(\overline{d},p), & E_d = 12.0 \text{ MeV}; \text{ measured } \sigma(\theta), & i T_{11}(\theta) \text{ for} \\ & 65^{\circ} < \theta < 100^{\circ}; \text{ natural target}. \end{bmatrix}$ | , r ₄ - | The around state multiplet of 210 Ri generate ofatudied_the meeter analyzaing namerate atmosphisms | |--|--| | | | | 3 | | | - | | | | | | · - | | | The state of s | | | · · · · · · · · · · · · · · · · · · · | | | | | | 3 172 | | | 4 | 1- | u | 10.000 | | • | |--|--------|---|---| | U . | | | ļ | | | | | | | | | | | | 7. | | | | | 7 — | | | | | <u></u> | | | | | | | | į | | | | | : | | <u></u> | | | | | | | | | | ¥ | | | | | - | | | | | 1,3 | Part | | | | , | 1 | | i | | | | | | | <u>, </u> | | | | | | | | | | | · | | | | <u>n</u> | , | • | | | | | | | | | | | ſ | | | 1 | | | | | | | | | i . | | | | | 1.1 | | | | | | | | | | 1 | | | , | | | | | | configuration, it has been suggested³ that the admixture to the 580 keV level is primarily $\pi f_{7/2} \nu g_{9/2}$. The vector analyzing power measurements for the levels in the ground state multiplet of ²¹⁰Bi and for the 8° level at 916 keV are shown in Fig. 2. The solid line is a smooth curve drawn through the measured analyzing power points for the entire ground state multiplet, and thus represents the average analyzing power. The analyzing power measurements display a gradual trend toward more negative values of iT_{11} with increasing excitation energy. Distorted-wave calculations suggest that this effect may be the result of a Q-value dependence of the vector analyzing power. This point is illustrated in Fig. 3. The solid and dashed curves in Fig. 3 show distorted-wave Born approximation (DWBA) calculations for pure $g_{9/2}$ transitions with Q values of iT_{11} as a function of excitation energy for each level in the ground state multiplet and for the 8-level at 916 keV. The solid curve is a linear fit to the data points shown. The smooth dependence of the average analyzing power on the excitation energy supports the idea that the differences in iT_{11} between the various transitions result from Q dependence of the vector analyzing power rather than from configuration mixing. The cross section and vector analyzing power measurements of the present experiment suggest that the 209 Bi(d,p) transitions to low-lying states in 210 Bi are pure $j^{\bullet} = \frac{9}{2}^{\bullet}$. Thus, the iT_{11} data are consistent with the suggestion that the admixture in the 580 keV level is $\pi f_{7/2} \nu g_{9/2}$. However, because of the preference of low energy (d,p) reactions for low angular momentum transfers, the present data cannot rule out the possibility of a significant admixture of $\pi h_{9/2} \nu i_{11/2}$ in the level.