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We have used a modified effective range expansion to parametrize the phase shifts for p->He elastic
scattering over the energy range of 0 to 12 MeV. Energy-dependent phase shifts were determined
by fitting a database consisting of 1085 measurements, including 68 new measurements of the spin
correlation coefficients Ayy, Ace, Azz, Acz, and Az, The addition of the new second-order polariza-
tion observables has made it possible to uniquely determine the low-energy phase shifts. The final
fit has a x® per degree of freedom of 0.966, corresponding to a confidence level of 0.778. The global
phase shift uncertainties obtained in the present work represent a significant improvement over the

results of previous analyses.

PACS number(s): 24.10.—i, 24.70.+s, 25.10.4s, 29.85.4c

L INTRODUCTION

Since the discovery in the early 1960s of excited states
in the A = 4 system, there have been numerous attempts
to determine the phase shift parameters for p-3He elastic
scattering. The earliest elastic scattering measurements
consisted mainly of cross section (o) and proton analyz-
ing power (A,o) points, and as a result the first phase
shift analyses resulted in multiple solution sets that all
described the data equally well [1-5].

With the construction of the first generation of po-
larized ®He targets, the database was expanded to in-
clude 3He analyzing power points (Aoy), as well as the
first measurements of spin correlation coefficients by

McSherry and Baker [6]. These additional observables.

served to restrict, but not eliminate, the number of mul-
tiple phase shift solutions. While the current generation
of polarized targets offers higher polarizations and better
long term operational stability, no new second-order po-
larization observables have been added to the low-energy
p-3He database in the last 20 years, and, as a result, the
more recent phase shift analyses have continued to find
large uncertainties in the fit parameters [7-12].

The purpose of this paper is to present the results of
a new phase shift analysis that has led to a significant

improvement in the accuracy of the low-energy phase
|

shift parameters. The new analysis differs from previ-
ous work in two important respects. First of all, we have
included for the first time the new analyzing power and
spin-correlation measurements reported in the preceding
paper [13]. We find that the availability of high-quality
spin-correlation measurements is essential in eliminating
multiple solutions and reducing the overall uncertainties.
In addition, for the first time, we have performed an
energy-dependent phase shift analysis in which the phase
shift parameters are expressed as a function of energy by
employing modified effective-range expansions. This pro-
cedure results in smoothly varying phase shifts and helps
to further reduce the parameter uncertainties.

II. FORMALISM

A. Calculation of the scattering observables

1. M-matriz amplitudes

In order to demonstrate the connection between the
phase shift parameters and the scattering observables we
adopt a formalism based on the development of La France
and Winternitz [14]. In this formalism the scattering
matrix M is written as the sum of six independent terms:

-, ~

M(ks, ki) = 3{ (a +b) + (@ —b)(o1 - 2)(02 - 1) + (c + d) (o1 - ) (o2 - 11) + (¢ — d) (o1 - ) (02 - )

+e(or + 02) - v + f(o1 — o3) - A},

where the unit vectors { , M, and 7i are defined according
to
ke + k;j N ke — k; . ke xk

=173 =t s T7H
|kg + kil |ke — ki tke x ki )

In Eq. (1), 01 and o, are Pauli operators that act on the
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(1)

[
spin wave functions of the proton and the 3He nucleus,

respectively. The six complex amplitudes a, b, c, d, e,
and f are functions of the reaction energy (|k|? = {k;|Z =
|ky|2) and the scattering angle [§ = cos™!(k; - ky)].

The connection between the M matrix and the observ-
ables (see Ref. [13]) is given by [14],

ooAik = 1Tr [Moy;00.M 1], 3
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where o is the unpolarized differential cross section,
oo = 1Tr [MMT']. (4)

Note that in Eq. (3), the analyzing powers Agy and A,
are obtained by replacing the appropriate Pauli operator
by the unit matrix.

Combining Egs. (1) and (3), one finds that the elastic
scattering observables are given by [14]

oo=73 (lal® + B2+ c|® + |4 + |e> + | f*), (52)

ooAyo = Re(a*e + b* f), (5b)
oodoy = Re(a”e = b* f), (5¢)
o0Ayy = 3(laf* — |B]” — |c|* + |dI* + [e]* — |f]*),  (5d)

00Az, = —Re(a*d)sin§ + Im(c* f)
00A,: = —Re(a*d)sin§ — Im(c* f)

—Im(d"e) cosf, (5e)
—Im(d*e) cosf, (5f)

/T
Ms'u’sv = k
Jur

The c.m. wave number k is given by [1]

v v
k= % : : )
where v is the relative vélocity of the two particles, and

# is the reduced mass of the system. The quantity C(6)
is the Coulomb scattering amplitude [16],

C(0) = (47) " Fncsc? (g) eintnese(§), (8)
where 7 is the Coulomb penetration factor [1],
— ZlZzez . [
= The ®)

The Y}”(6,0) are the normalized spherical harmonics of
Condon and Shortley {17].

The factor of il*~¥l, which does not appear in the
expressions used by Seyler [15] and by Lane and
Thomas [16], is included here so that the M matrix be—
haves properly under time reversal [1, 18].

The matrix Ut, 11, Can be expressed in terms of the
phase shift parameters connecting the incoming and out-
going partial waves with the same fotal angular momen-
tum j. The indices I and !’ refer, respectively, to the
incoming and outgoing orbital angular momentum of the
system. Following Tombrello [1], we have

j _ ilogta . 7 _
UZJ:,:’I, —e (cr+ ")(61,1'53,3’ — Sl’s’,la) =

where the o’s are the modified Coulomb phase shifts,

UlJa,l’s'? (10)

O£0=0,

l
ap = Z arctan(n/s), (11)

and where 57, , 16 is the scattering matrix.

For the mixed angular momentum states, the .S matrix
is parametrized according to the convention of Blatt and
Biedenharn [19],

iC(0)85516,yr + > V2 + 1{slv0]jv)(s'V'v'v — '
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ooAz: = Re(a*d) cos 0 + Re(b*c) —Im(d"e)sinf, (5g)
00A,, = —Re(a*d) cos® + Re(d*c) + Im(d*e)sinf, (5h)

where Re and Im refer to the real and imaginary parts of
the complex argument.

2. M -matriz elements

In channel-spin representation the elements of the M
matrix are written as M,/ 5, where s, and s/, de-
note the channel-spin quantum numbers for the initial
and final states, respectively. For the channel spin we

- employ the coupling order s = s; + sa, where as before

sy is the proton spin and s, is the He spin. A given ma-
trix element can be expanded in partial waves according
to [15]

livyit=t1ug,, Yy (6,0) | . (6)

2882 1 4in 2¢[e?i®

— 82153
cosZe 293 4 gin?e 2161 | -
(12)

Here 4; and §; are the “eigen phase shifts” and € = €(j™)
is the mixing paramieter connecting the two states with
the same total angular momentum j and parity 7. In or-
der that the sign of the mixing parameter be well defined,
we adopt the convention that the phase shift §; refers to
the parameter with the lesser value of either { or s.

Finally, to make the connection between the phase
shifts and the scattering observables complete, we give
the relationship between the M-matrix amplitudes and
the M-matrix elements [14]:

S = cosZe €21 4 ginZce
% sin 2¢[e?: — eia]

%(MIOLU + My — Ml 111), (13a)
b= 3 (Moooo + M1111 + M1 _111), (13b)
c=3(- Moooo + Miy1: + My —111), (13¢)

1
~Vaen ( 1110 1011) (13d)

)

e=—=(M; — M s 13e
\/5( 1110 1011) (13e)
f=—iV2ZMi100. (13f)

B. Effective range expansion

In order to perform a global fit of the measurements
obtained over a range of energies, we need to express
the phase shift parameters as functions of the scattering
energy E. This is done by using a modified effective
range expansion [20] in which each phase shift, 61 , is
parametrized through a power series in k2:



43 EFFECTIVE RANGE PARAMETRIZATION OF PHASE SHIFTS . .. 1903

PR [cot &, + 2nH(n)/CR(m)] = 3 adl*k™™,

n=0. . .
(14)
with the following definitions:
27y
G =gm— (15)
n?
ctn =t (1+ %) (16)
H(n)=n2i——1————lnn—7, 1
s=1 8(82 + 772)
v =0.577216 (Euler’s constant). (18)

Strictly speaking, Eq. (14) is correct only for the case
in which there is no coupling between angular momentum
states. However, since the formula produces an energy
dependence that reflects the presence of the Coulomb
and angular momentum barriers, it represents a reason-
able choice for a phenomenological parametrization of the
phase shifts.

Choosing a reasonable form for the expansion of the
mixing parameters is more difficult, since their behavior
is not as well understood as that of the phase shifts. We
note, first of all, that the value of the mixing parameter
is inherently ambiguous by +90°, since in Eq. (12), the
operation

8, =62, 8,=240;, and € =e+90° (19)

leaves the S matrix unchanged. This implies that as
E goes to zero, the value of ¢ can approach either 0°
or 90°. Presumably, the sensible choice is to pick the
solution in which € goes to zero at low energies. Blatt
and Biedenharn [21, 22] have shown that, for n-p elastic
scattering in the limit of low energies, the 3S;-2D; mixing
parameter (1) varies with the wave number according
to

tane & ak?, ' (20)

where a is a constant. It is presently unclear how this
behavior is modified by the presence of the Coulomb in-
teraction, or whether the same result applies for the other
mixing parameters. We have chosen to adopt the follow-
ing simple power series expansion for all of the mixing
parameters:

tane(j™) = Zafkﬁ ) (21)
i=1

While this formula obviously does not include Coulomb
effects, we find that it provides a convenient way of de-

scribing the behavior of the mixing parameters over the
0 to 12 MeV energy range.

III. THE DATABASE

For the phase shift fits we have used a database that in-
cludes most of the available 3He(p, p)*He measurements.
The database, which consists of a total of 1085 measure-
ments, is summarized in Table I. To facilitate the treat-
ment of normalization uncertainties, the data have been
divided into 14 groups consisting of measurements that
are thought to have common normalization errors. The
measurements of groups I and 2 are from the experi-
ment described in the preceding paper [13]. The data in
group 1 are measurements that depend on the 3He target
polarization (Aoy, Aez, Ayys Azzy Az, and A..), while
the measurements of group 2 consist entirely of proton
analyzing power points (Ayo).

Of the data from other authors, several points have
been discarded for various reasons.. In previous work,
Clegg et al. [2] encountered some difficulties with the
cross section measurements of both Brolley et al. [28]
and of Lovberg [29]. As a result, the data of Brolley et
al. obtained from recoil 3He measurements were not in-
cluded in the group 12 data set. The forward angle data
of Lovberg [29] apparently suffer from problems due to
large double scattering contributions and from the inabil-
ity to resolve protons scattered from contaminant nuclei,
and consequently the measurements at 30°, 35°, and 40°
(c.m.) have been omitted from the group 13 data set. Fi-
nally, the proton analyzing power measurements of Drigo
et al. [31] were not included in our database, since these
measurements are thought to be faulty based on the R-
matrix analysis of Detomo et al. [25].

Several additional data points were rejected on the ba-
sis of our own fitting results. After each effective range
fit had been completed, the x2 contribution of each indi-
vidual data point was inspected. If a given measurement
was found to always have a large contributing error, this
was taken as an indication of a possible systematic er-
ror not reflected in the quoted uncertainty. For the data
of group 12, it was noted over the course of several fits
that the three most forward angle cross section points
at 6.5 MeV and the most forward point at 8.3 MeV all
had x2 contributions in excess of 20. Similarly, the most
forward angle A, measurement of group 6 at four ener-
gies (1.75, 2.00, 2.25, and 2.75 MeV) all had individual
contributions to x? of greater than 10, indicating errors
of greater than 30. As a result, these eight points were
omitted from the database, and are not included in Ta-
ble I.

After completing the phase shift fits (described below),
the effect of these eight data points on the final phase
shift values was investigated, and it was found that these
points do not have a large effect on the final results. In
particular, we find that when these points are included
in the database, the phase shift parameters change by
only a small fraction (typically 20%) of the final quoted
parameter uncertainty.
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TABLE I.

M. T. ALLEY AND L. D. KNUTSON

Data used in the global effective range phase shift fits for the 3He(p,p)3He reaction.
The data set includes a total of 1085 measurements.

Number
Group Observable Energies of data Reference
1 Aoy 4.01, 5.54, 7.03, 8.52, 10.01 48 [13]
Ayy 4.01, 5.54, 7.03, 8.52, 10.01 48
Az 5.54 5
A 5.54 5
Are 5.54 5
A, 5.54 5
2 Ago 4.01, 5.54, 7.03, 8.52, 10.01 183 [13]
3 Ao 6.80, 8.82 8 (23]
Aoy 6.80, 8.82 8
A 6.80, 8.82 8
Ayy 6.80, 8.82 8
4 Aoy 3.86, 4.38, 4.89, 5.90, 6.91, g
7.92, 8.93, 9.93, 10.94 34
Az 8.80 2
5 o 1.01, 1.60, 2.25, 3.5 36 [24]
6 Ago 1.75, 2.00, 2.25, 2.50, 2.75, [25]
2.95, 3.13, 3.36, 3.55, 3.75,
4.00, 4.50 153
7 Aoy 2.30, 3.00, 4.47, 6.80, 8.80 63 [26]
8 Aoy 10.5 26 9]
9 o 4.00, 5.51, 6.82, 8.82, 10.77 80 [27]
Ago 4.05, 5.52, 6.83, 8.83, 10.74,
12.79 28
10 o 4.55, 5.51, 6.52, 7.51, 8.51, 2]
9.51, 10.38, 11.48 . 167
11 Ao 4.00, 5.51, 6.82, 8.82, 10.77 69 [5]
12 o 6.5, 8.3 - 58 28]
13 o 9.75 22 [29]
14 Aoy 12.4 16 [30]

IV. FITTING PARAMETERS

To determine which phase shift parameters must be in-
cluded in order to reproduce the 3He(p,p)°He database,
we observe first of all that at low energies elastic scatter-
ing is the dominant reaction channel. The threshold for
the breakup reaction p + 3He — d + 2p occurs at a pro-
ton energy of 7.3 MeV, while the next reaction channel
(p + *He — n + 3p) does not open until E, = 10.3 MeV.
Both reactions have very low cross sections at low ener-
gies (e.g., 0 = 5 pb for the four-body breakup reaction
at 13 MeV [3,32]), and so it is conventional to ignore the
inelastic scattering processes in the energy regime below
20 MeV. Therefore all of the phase shifts are assumed to
be real.

For the range of 0 to 12 MeV, all of the S (1S, 35;) and
P (*Py, 3P, ®P1, 3P,) phase shifts are clearly necessary for
an accurate reproduction of the data. It is less clear how
many of the higher partial waves are needed for energies
up to 12 MeV. We have found that the 3D; phase shifts
are quite small in absolute magnitude and vary little be-
tween the different j values. Consequently, in our fits we
take the three triplet D waves to be equal, so that only
a single adjustable parameter, D;, is needed. Similarly,
we include a single 3F; parameter to represent all of the
triplet F' waves, While this phase shift was always small

(maximum values were on the order of 3°), it was indis-
pensable for obtaining a good fit to the data. For the
corresponding singlet waves, it was found that the 1D,
was important for a successful fit. On the other hand,
the *F3 phase shift never noticeably improved the fit re-
sults, and therefore this partial wave was not included in
the final search. . ,

As for the mixing parameters, it has long been known
that the €(17) plays an important role. The importance
of the remaining mixing parameters is less clear, and dif-
ferent authors have included different parameters in their
work. Szaloky and Seiler [10] have used (1) and ¢(27)
in addition to the ¢(17), while Heiss and Hackenbroich [8]
have found that only (2™} was appreciable at higher en-
ergies. Our best results (see Sec. V A) were obtained by
including the ¢(17), €(1*), and ¢(2~) mixing parameters.

The assumed energy dependence of the various phase
shifts and mixing parameters has already been described
in Egs. (14) and (21). For each phase shift and mixing
parameter the power series was truncated to include only
three expansion coefficients. With nine phase shifts and
three mixing parameters, this brings the total number of
fitting parameters to 36.

The overall normalization of each separate data set was
handled as follows. In each data group k (see Table I)
we have a set of measurements y¥ with errors dy*, where



the index ¢ refers to the individual measurements. If we
let v represent the scale factor for the measurements of
group k, then the group x? may be written as [33]

kak_y._ Vi — Vo 2
xk—mmZ( g ) +( o ) , (22)

where the f¥ are the predictions from the phase shift fit.
The last term in Eq. (22) represents the contribution to
the overall x2 from the renormalization of the data. Here
vy, which always has the value 1, represents the experi-
menter’s estimate of the required renormalization, while
dvy (typically 0.05) is the normalization uncertainty.

The procedure we follow is to first vary the phase shift
parameters to minimize the overall x2:

=3 "xt (23)

with the group scale factors fixed at v = 1. Once the
phase shifts have been determined the scale factors are
adjusted to further minimize x2. This last step is easily
accomplished analytically, with the result

_ yEfE v N\
‘{ (dy)+;;-]/[2 (a) +3—]

(24)

It should be emphasized that the group normalizations
are not fitting parameters but rather scale factors cal-
culated after the effective range coefficients have been
determined.

V. PHASE SHIFT FITS

A. General comments

With the addition of the spin correlation measure-
ments from Ref. [13], it was immediately clear that the
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new data could not be adequately described with the
€(17) mixing parameter alone. In particular, over the
energy range of 4 to 10 MeV the phase shift predictions
of A, were generally 50 to 100% smaller than the mea-
surements in the region from 60° to 120° in the c.m. It
was also clear that the back-angle Ay, measurements play
an important role in the phase shift determination; small
variations between potential solution sets produced large
differences (i.e., factors of 2 or more) in the predicted
values of Ay, in the angular range of 140° to 180°.

Effective range searches were ultimately attempted us-
ing combinations of the mixing parameters e(17), e(1%),

€(27), and ¢(2*). The parameter set containing the A

e(17), €(11), and €(2™) eventually produced a total x?
that was over 9% lower than the parameter set that in-
cluded the €(17), €(1%), and €(2%) mixing parameters.
For this reason the ¢(2%) was not retained in the final
fit. Both the (1) and ¢(27) were considered to be in-
dispensable for a reasonable fit to the data, even though
their magnitudes were never greater than 5°.

B. Results

The final phase shift solutions are shown in Figs. 1-
3. For comparison, our results are plotted along with
the solutions of McSherry and Baker [7], Szaloky and
Seiler [10], and Beltramin et al. [{12]. In Fig. 1 we see
that the agreement is quite good for the 35; phase shift.
The 1S, phase shift appears to be 1ess well determmed
shown.

The results for the P-wave phase shifts are shown in
Fig. 2. In comparing these parameters one needs to in-
sure that all results correspond to the same branch of
Eq. (19). In Refs. [7] and [10], the reported ¢(17) mixing
parameters are close to 90°. Consequently, in prepar-
ing the graphs we have shifted the ¢(17) values by 90°
and interchanged the 3P, and 1P, phase shifts reported
in those references. Our results for the 3P phase shifts
agree quite well with the previous work. However, for the

© McSherry (Ref. [8])

120 T L] ‘l T I T T T T ‘ T
110
100

A A Szaloky (Ref. [11])
e Beltramin (Ref. [13])

FIG. 1. The effective range S-wave phase

100 —————

Phase Shifts (deg)
[2]
o

shift solutions (solid curves), shown along
with the results of McSherry and Baker [7],
Szaloky and Seiler [10], and Beltramin et al.
[12]. The open triangles are taken from Table
3 of Ref. [10], while the solid triangles corre-
spond to the error bands displayed in Fig. 1
of Ref. [10]. In this latter case the data point
shows the midpoint of the error band, while
the error bar corresponds to the width of the
band. Points that are shown without error
bars correspond to results published with no
quoted uncertainty.

0 5 16
Energy (MeV)
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o McSherry (Ref. [8])
A A Szaloky (Ref. [11))
® Beltramin (Ref. [13])

FIG. 2.

(@]

Phase Shifts (deg)
(S L S < LN o ]
O O O O O

N
(=]

10

10
Energy (MeV)

P; there are substantial differences for energies greater
than 5 MeV. The remaining phase shifts (Ds, 3D;, and
%F;) and mixing parameters [e(17), ¢(1%), and ¢(2~)] are

shown in Fig. 3.

The final x2 of the fit was 1013.77, which for 1085
points and 36 parameters results in a x2 per degree of

The effective range P-wave phase

shift solutions" (solid curves), shown along
. .with the results of McSherry and Baker [7],
Szaloky and Seiler [10], and Beltramin et al.
[12]. See the caption of Fig. 1 for details.

freedom of 0.966. This in turn yields a confidence level of
0.778. The best fit group normalizations vy ranged from
0.957 for group 1 to 1.076 for group 4. It should be noted
here that the excellent x2 values result in part from the
fact (see Sec. III) that we discarded several points which
bad anomalously high x? contributions.

10 —————————— O McSherry (Ref. [8])
5t e(27) 1 A A Szaloky (Ref. [11])
0 e Beltramin (Ref. [13]
'—5 r . 10 T T T T T T T ] T
— PR S Il L 1 S S S | L 5 ] 4
% 5 10 IO B S
0 + + ol
—_ 15 T T T T T T T T T T T "'5 r n
| + N — 1 L 1 [ M SR SR .
g 12_ e(1) ﬁ £l 5 10 FIG. 3.
o o
\U; 0 ore—esieTe Lo ele—o 10— — T
=_ MR IRTE. 5 RS PR SR B L 3
%: >0 5 10 g D, : I P B
3)) 10 T T ¥ T T T T T T T _5 I~ ' T
g 5re(h) ~10 5 0
a
- 0V T
~10 5D 1
15 O Z.JT: —
-20 -5} 0" T .
=25 -10} ) .1 .
— P TS WY SO T S SR TS T SN — TR S S N | PR W W . .3
300 5 10 150 5 10

Energy (MeV)

The effective rangersolutions for

the D- and F-wave phase shifts and for the
three mixing parameters. See the caption of
Fig. 1 for details. Our results for the *D;
phase shift are compared with the 3D, phase
7 shift results from Refs. [7,12].
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two fits appear to be quite comparable in quality. It
turns out that the main difference between the two fits
(as far as x? is concerned) occurs in the proton analyz-
ing power A, in the angle range between 80° and 110°
where the two curves differ systematically by about one
standard deviation. Since there are many data points
in the region, one can easily imagine that a small sys-
tematic error in the angle determination (on the order
of 0.1°) would be capable of skewing the single-energy
phase shift results. Of course, the global fit should be
affected as well, but since the database is much larger
and the fit is constrained by the effective range formulas
the effect should be much smaller in this case.

Figure 5 also illustrates the value of spin correlation
measurements for determining the correct phase shift so-
lution. In particular, we see that even relatively crude
measurements of A,, and A, would go a long way to
resolve the differences between the two fits and thereby
minimize the phase shift uncertainties.

We shall now describe how we use the results of the
single-energy fits to estimate the overall uncertainty in
the global phase shifts. The effective range and single-
energy phase shift solutions will be represented by &%
and §°¢, respectively, and the statistical uncertainty de-
rived from the single-energy error matrix will be repre-
sented by d0°°. For purposes of estimating the systematic
errors, the phase shift parameters may be divided into
two groups. For most of the parameters the difference
between the 6°® and 6% is comparable in magnitude to

the statistical uncertainty. In other words, the average
deviation,

18
o=z

j=1

é‘eﬁ — §%e (E )

d&se(E )

(25)

is close to 1. We take this to mean that, for these pa-
rameters, the uncertainties are dominated by statistical
errors, and therefore we take the uncertainty to be just
the mean single-energy statistical error

TABLE II. Estimates of the overall phase shift uncertain-
ties.
Parameter Overall error
1S, 3.5°
581 0.6°
P 1.5°
Py 0.5°
°P 0.5°
Py 0.6°
Dy 1.0°
D; 0.2°
*F; 0.1°
e(17) 0.6°
(1) 1.5°
€(27) 2.4°




48 EFFECTIVE RANGE PARAMETRIZATION OF PHASE SHIFTS . .. 1909

13 1 > s€e
dee = = ; d&**(E;). (26)

For the remaining parameters ['Sg, 'Py, €(17), and €(27)]
o is close to 2 which suggests that systematic errors are
important. For these parameters the uncertainty is taken
to be 2dé%¢. The final parameter error estimates are listed

in Table II.

VI. CONCLUSION

‘We have obtained a new set of energy dependent phase
shifts for p-3He elastic scattering in the energy range
0 to 12 MeV. The phase shifts and mixing parameters
were parametrized using modified effective range formu-
las, and this has proven to be a useful approach for mod-
eling the phase shifts over the low-energy region. We
have obtained an excellent fit (reduced x? of 0.966) to

the global database which contains a total of 1085 mea-
surements.

The new phase shifts are considerably more accurate
than previous determinations. The use of an energy de-
pendent parametrization (as opposed to single energy
fits) and the addition of new spin correlation measure-
ments have been instrumental in eliminating ambiguities
and reducing the phase shift uncertainties. Extending
the current analysis to higher energies would presumably
be straightforward with the addition of spin correlation
measurements in this energy region.
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