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wherexi andyi are the Jacobi coordinates

xi5r j2r k ~2!

and

yi5~r j1r k22r i !/A3 ~3!

with the indicesi , j ,k cyclic. For the channel decompositio
we useLS coupling. The componentsc(xi ,yi) are written as
an expansion in channels,

c~xi ,yi !5(
a

ca~xi ,yi !, ~4!

where

ca~xi ,yi !5fa~xi ,yi !Y a
jk,i~ x̂i ,ŷi !. ~5!

Here fa is a function of the radial coordinatesxi and yi ,
while the quantityYa is a spin/angle/isospin function con
structed in the following coupling scheme:

Y a
jk,i5@~ l x ,l y!L;~sjk,si !S#J

Jz@ t jk,t i #T
Tz . ~6!

In this expressionl x and l y represent the orbital angular mo
mentum associated with the coordinatesxi and yi , respec-
tively, and L is the total orbital angular momentum. Th
quantitysjk is the total spin of the pairj ,k,

sjk5sj1sk , ~7!

and the channel spinS is the vector sum ofsjk andsi . The
isospin quantum numbers are defined in the analogous w
Even parity is obtained by requiringl x1 l y to be even, and
the final wave functionC is fully antisymmetric if the chan-
nel wave functions,ca , are antisymmetric under interchang
of j andk ( l x1sjk1t jk must be odd!.

In place ofxi andyi it is convenient to employ the hyper
radial coordinate

r5@xi
21yi

2#1/2. ~8!

One can easily show that this quantity is just the sum
quadrature of the interparticle separations,

r25 2
3 ~r 12

2 1r 23
2 1r 31

2 !. ~9!

Along with r we use hyperspherical coordinatezi defined by
the equation

zi5cos 2f i , ~10!

where

xi5r cosf i , yi5r sin f i . ~11!

With these definitions and parameters, the bound-s
wave functions are generated following the procedures
lined in Ref. @10#. The channel expansion ofc @Eq. ~4!#
included the 14 basis states listed in Table I. In the tableMa
is the number of terms in the hyperspherical expansion offa
~see Ref.@10#!.

The expansion ofC in terms of the three Faddeev-lik
components is an efficient means of generating a fully a
y.
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te
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symmetric wave function. However, since the compone
are expressed in terms of different sets of Jacobi coordina
the wave function has some peculiar properties. For
ample, the various terms in the expansion ofc in channelsa
are not mutually orthogonal. Thus, for example, there i
nonzero overlap between thea51 component ofc1 and the
a59 component ofc2. As a result, with this representatio
of C there is no natural way to define probability weights f
the individual channels.

To avoid these complications, the wave functionC gen-
erated by the method outlined above is rewritten in terms
a single set of Jacobi coordinates. We choose the pairx1 and
y1, and must therefore transformc2 and c3. When this is
done, new wave function components~beyond the 14 in-
cluded in the original expansion ofc) are generated.

We then further simplifyC by projecting out from the
isospin wave functions only those terms in which partic
No. 1 is the proton. With this choice the coordinatex in the
projected wave function connects the two identical particl
and as a result, the only channels that survive are those
which l x1s23 is even. In making the isospin projection, th
parts of the wave function which one discards are, except
labeling, just copies of the final projected wave function.
restore the normalization integral to unity, the project
wave functions are multiplied byA3.

B. Three-body potentials

A number of three-nucleon potentials models have b
proposed in the literature. The most commonly used pot
tials are the Tucson-Melbourne~TM! potential @1,5#, the
Brazil ~BR! potential @2#, and the Urbana~UR! potentials
@3,4,11#. These potentials are similar in some respects, si
they all incorporate the basic 2p-exchangeD-excitation pro-
cesses, and all are characterized by a rather complex de
dence on the spins, isospins, and coordinates of the t
interacting nucleons~see, for example, Ref.@12#!. In addition
to these interactions, the UR potential contains a purely c

TABLE I. Quantum numbers of the 14 terms employed in t
channel expansion of the wave functionca(xi ,yi). Ma is the num-
ber of hyperradial functions used in the expansion offa(xi ,yi).

a l x l y L sjk S tjk Ma

1 0 0 0 1 1
2 0 8

2 0 0 0 0 1
2 1 8

3 2 0 2 1 3
2 0 7

4 0 2 2 1 3
2 0 7

5 2 2 0 1 1
2 0 6

6 2 2 2 1 3
2 0 6

7 2 2 1 1 1
2 0 6

8 2 2 1 1 3
2 0 6

9 1 1 0 1 1
2 1 2

10 1 1 1 1 1
2 1 3

11 1 1 1 1 3
2 1 2

12 1 1 2 1 3
2 1 2

13 1 1 0 1 1
2 0 2

14 1 1 1 0 1
2 0 2
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TABLE II. Properties of the lowestS-, P-, andD-state components of the bound state wave function.

state 11 the entry in theDa column is actuallyD̃a defined in Eq.~25!.

a l x l y L sjk S Pa ~%! Da

Cent BR UR TM Cent BR UR TM

S states
2 0 0 0 0 1

2 88.55 88.17 88.01 88.44 5.491 5.518 5.511 5.52
9 1 1 0 1 1

2 0.45 0.44 0.44 0.45 1.102 1.106 1.103 1.10
15 2 2 0 0 1

2 1.32 1.33 1.33 1.33 1.638 1.646 1.642 1.64
P states

10 1 1 1 1 1
2 0.020 0.038 0.037 0.03720.0119 20.0129 20.0132 20.0113

11 1 1 1 1 3
2 0.020 0.033 0.031 0.044 0.0102 0.0108 0.0107 0.01

16 2 2 1 0 1
2 0.022 0.038 0.036 0.047 0.0051 0.0055 0.0054 0.00

D states
12 1 1 2 1 3

2 5.40 5.76 5.89 5.42 20.535 20.551 20.551 20.547
17 1 3 2 1 3

2 2.26 2.22 2.25 2.30 0.139 0.138 0.138 0.13
18 3 1 2 1 3

2 0.66 0.64 0.65 0.62 20.049 20.054 20.054 20.053
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that, for experiments that probe the bound state, it will
extremely difficult to find evidence~beyond the binding en
ergy discrepancy! for the existence of three body forces. F
the dominantS- andD-state wave functions the three-bod
force effects are very small. In magnitude, the largest
served shifts are only on the order of 0.03 fm21/2 and occur
at small r ~typically r52 fm!. For the P states, the frac-
tional changes are often substantial, but these compon
represent only a very small portion of the total wave fun
tion. Currently, we have no way of observing theP-state
components experimentally; however, the present calc
tions suggest that if one could devise experiments to mea
some property of theP-state components, these experime
could well provide a window for observing three-body for
effects.

IV. MOMENTUM SPACE RESULTS

Nuclear reactions that are designed to probe bound s
wave functions are often sensitive to wave function prop
ties over a relatively small range of momentum transfers.
this reason, it is useful to have access to wave function
momentum space.

The momentum space wave function for channela is
given by

Fa~k,q!5S 1

2p D 3E e2 ik•xe2 iq•yca~x,y!d3xd3y. ~16!

By inserting explicit expression for the spin/angle/isosp
functions and expanding the exponentials, one obtains

Fa~k,q!5ga~k,q!Ya~ k̂,q̂!, ~17!

where

ga~k,q!5S 2

p D i 2~ l x1 l y!

3E
0

`E
0

`

j l x
~kx! j l y

~qy!fa~x,y!x2dxy2dy.

~18!
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Proceeding as we did in coordinate-space, it is usefu
introduce ‘‘hypermomentum’’ coordinatesQ andz. We de-
fine

Q5@k21q2#1/2 ~19!

and

z5cos 2u, ~20!

where

k5Q cosu, q5Q sin u. ~21!

Note that in terms ofQ, the three-body kinetic energy i
simply \2Q2/M , whereM is the nucleon mass.

For low-energy experiments one is interested in
momentum-space wave functions at very low momentu
The low-momentum behavior of a given channel wave fu
tion can be quantified in terms of a single parameter. To
this, we note that ifQ is sufficiently small, thenk andq are
both small, and one can expand the spherical bessel f
tions of Eq.~18! in a power series. Retaining only the lea
ing term we obtain

ga~k,q!.Dakl xql y/b l x1 l y13, ~22!

where the low-momentum parameterDa is given by

Da5
1

~2l x11!!!

1

~2l y11!!! S 2

p D i 2~ l x1 l y!b l x1 l y13

3E
0

`E
0

`

xl x12yl y12fa~x,y!dxdy. ~23!

In these equations we have defined\2b2/M5B, whereB is
the 3H binding energy, and have incorporated appropri
factors ofb to makeDa dimensionless.
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FIG. 1. CalculatedS-state components of the3H wave function
plotted as a function of the hyperradius. The quantity shown
r5/2fa(r,z). The quantum numbers@( l x ,l y)L;(sjk,si)S# of each
state are indicated in the figure.
s
FIG. 2. CalculatedD-state components of the3H wave function

plotted as a function of the hyperradius. The quantity shown
r5/2fa(r,z). The quantum numbers@( l x ,l y)L;(sjk,si)S# of each
state are indicated in the figure.
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FIG. 3. CalculatedP-state components of the3H wave function
plotted as a function of the hyper-radius. The quantity shown
r5/2fa(r,z). The quantum numbers@( l x ,l y)L;(sjk,si)S# of each
state are indicated in the figure.
s

FIG. 4. S-state components of the momentum-space3H wave
functions. The hypermomentum variablesQ and z are defined in
Eqs.~19! and~20!. The quantity shown in the plots isQ5/2ga(Q,z).
The quantum numbers@( l x ,l y)L;(sjk,si)S# of each state are indi-
cated in the figure.
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FIG. 5. D-state components of the momentum-space3H wave
functions. The hypermomentum variablesQ and z are defined in
Eqs.~19! and~20!. The quantity shown in the plots isQ5/2ga(Q,z).
The quantum numbers@( l x ,l y)L;(sjk,si)S# of each state are indi
cated in the figure.
FIG. 6. P-state components of the momentum-space3H wave
functions. The hypermomentum variablesQ and z are defined in
Eqs.~19! and~20!. The quantity shown in the plots isQ5/2ga(Q,z).
The quantum numbers@( l x ,l y)L;(sjk,si)S# of each state are indi-
cated in the figure.
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