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wherex; andy; are the Jacobi coordinates TABLE I. Quantum numbers of the 14 terms employed in the
channel expansion of the wave functign(x; ,y;). M, is the num-
Xi5rj2rk 2 ber of hyperradial functions used in the expansiorpQ{x; ,y;).
and a I, ly L sk S gk M,
yi5(r;1r22r)/\3 (3) 1 0 0 0 1 i 0 8
. o . B 2 0 0 0 0 3 1 8
with the indices, j,k cyclic. For the channel decomposition 3 2 0 2 1 3 0 7
we usel S coupling. The componenig(x; ,Y;) are written as 4 0 2 2 1 3 0 7
an expansion in channels, 5 2 2 0 1 L 0 6
6 2 2 2 1 3 0 6
Y Y52 (X Yi), @ 7 2 2 1 1 3 0 6
@ 8 2 2 1 1 3 0 6
1
where 9 1 1 0 1 E 1 2
10 1 1 1 1 3 1 3
o B

Yol X1 Y15 ol X YDV (X ). 5 11 1 1 1 1 2 1 2
12 1 1 2 1 5 1 2
Here ¢, is a function of the radial coordinates andy;, 13 1 1 0 1 3 0 2
while the quantity), is a spin/angle/isospin function con- 14 1 1 1 0 : 0 2

structed in the following coupling scheme:

jkii (K g\ tik .17z
Va SLLIL (S, s) ST il ©) symmetric wave function. However, since the components

In this expressio, andl, represent the orbital angular mo- are expressed in terms of different sets of Jacobi coordinates,
X y

mentum associated with the coordinalesandy,, respec- 1€ wave function has some peculiar properties. For ex-
tively, and L is the total orbital angular momentum. The @MPple, the various terms in the expansion/dh channelsx

quantitysi¥ is the total spin of the pair,k, are not mutually orthogonal. Thus, for example, there is a
_ nonzero overlap between tlhieé51 component of};, and the
5515, (7)  «59 component off,. As a result, with this representation

. ik of W there is no natural way to define probability weights for
and the channel spi8 is the vector sum o§* ands . The the individual channels.

isospin quantum numbers are defined in the analogous way. To avoid these complications, the wave functiéngen-

Ever] parity Is obta|'ned .by reqU|r|dg1Iy to .be' even, and erated by the method outlined above is rewritten in terms of
the final wave functionV is fully antisymmetric if the chan- : : . .
a single set of Jacobi coordinates. We choose thexpand

nel wave functionsy, , are antisymmetric under interchange o
of j andk (I 1sjkjlf/{'jk must be)é)dﬁi g yi, and must therefore transforgi, and /3. When this is
X

In place ofx; andy; it is convenient to employ the hyper- done, new wav_e_funcnon cqmponer(ls;eyond the 14 in-
radial coordinate cluded in the original expansion @f) are generated.
We then further simplify# by projecting out from the
p5[x*1y?1¥2 (8)  isospin wave functions only those terms in which particle
No. 1 is the proton. With this choice the coordinate the
One can easily show that this quantity is just the sum inprojected wave function connects the two identical particles,
quadrature of the interparticle separations, and as a result, the only channels that survive are those for
which 1,1.s%% is even. In making the isospin projection, the
parts of the wave function which one discards are, except for
labeling, just copies of the final projected wave function. To
restore the normalization integral to unity, the projected
wave functions are multiplied by3.

p?55(r5Ar51r%). 9)

Along with p we use hyperspherical coordinatedefined by
the equation

z;5co0s 2¢;, (20

where B. Three-body potentials

X;5p cosd;, Y5p sing;. (12) A number of three-nucleon potentials models have been
proposed in the literature. The most commonly used poten-
With these definitions and parameters, the bound-statgals are the Tucson-Melbourn€fM) potential [1,5], the
wave functions are generated following the procedures outBrazil (BR) potential[2], and the UrbangUR) potentials
lined in Ref.[10]. The channel expansion af [Eq. (4)] [3,4,11]. These potentials are similar in some respects, since
included the 14 basis states listed in Table I. In the tdbje  they all incorporate the basicr2exchange\ -excitation pro-
is the number of terms in the hyperspherical expansiof of cesses, and all are characterized by a rather complex depen-
(see Ref[10]). dence on the spins, isospins, and coordinates of the three
The expansion ofV in terms of the three Faddeev-like interacting nucleonésee, for example, Ref12]). In addition
components is an efficient means of generating a fully antito these interactions, the UR potential contains a purely cen-
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TABLE Il. Properties of the lowes$-, P-, andD-state components of the bound state wave function. For
state 11 the entry in thB, column is actuallyﬁa defined in Eq(25).

a Iy Iy L sk s P, (%) D,
Cent BR UR TM Cent BR UR ™
S states

88.55 88.17 88.01 88.44 5.491 5.518 5.511 5.526
0.45 0.44 0.44 0.45 1.102 1.106 1.103 1.108
1.32 1.33 1.33 1.33 1.638 1.646 1.642 1.649

P states

0.020 0.038 0.037 0.03720.0119 20.0129 20.0132 20.0113
0.020 0.033 0.031 0.044 0.0102 0.0108 0.0107 0.0107
0.022 0.038 0.036 0.047 0.0051 0.0055 0.0054 0.0055

D states

5.40 5.76 5.89 542 20535 20.551 20.551 220.547
2.26 2.22 2.25 2.30 0.139 0.138 0.138 0.139
0.66 0.64 0.65 0.62 20.049 20.054 20.054 220.053
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that, for experiments that probe the bound state, it will be Proceeding as we did in coordinate-space, it is useful to
extremely difficult to find evidencéeyond the binding en- introduce “hypermomentum” coordinatéd and (. We de-
ergy discrepangyfor the existence of three body forces. For fine

the dominantS- and D-state wave functions the three-body

force effepts are very small. In magnitude, the largest ob- Q5[k?1g?]Y2 (19
served shifts are only on the order of 0.03%Hf and occur

at smallp (typically p52 fm). For theP states, the frac-
tional changes are often substantial, but these componend!
represent only a very small portion of the total wave func-
tion. Currently, we have no way of observing tRestate {5cos 29, (20
components experimentally; however, the present calcula-
tions suggest that if one could devise experiments to measuignere
some property of th€-state components, these experiments
could well provide a window for observing three-body force
effects.

d

k5Q cosf, g5Q siné. (21

IV. MOMENTUM SPACE RESULTS Note that in terms ofQ, the three-body kinetic energy is

_ _ simply 72Q?/M, whereM is the nucleon mass.

wave functions are often sensitive to wave function propermomentum-space wave functions at very low momentum.
ties over a relatively small range of momentum transfers. Fofrhe Jow-momentum behavior of a given channel wave func-

momentum space. ] this, we note that ifQ is sufficiently small, therk andq are
~ The momentum space wave function for chaneels  poth small, and one can expand the spherical bessel func-
given by tions of Eq.(18) in a power series. Retaining only the lead-

13 ing term we obtain
@a(k,q)S(Z) f e2ik-xg2iayy, (x y)d3xd3y. (16)
9a(k,q)=DK'xq'y/ gxHy13, (22
By inserting explicit expression for the spin/angle/isospin
functions and expanding the exponentials, one obtains where the low-momentum paramet®y, is given by

D, (k,0)5g,(k0)Vo(k,0), (an n L
D5 _ i2(lxl|y)B|Xl|y13
where “Lant 2ant iy
2 © o
ga(k,Q)5(;)i2('xl'y) 3f0 fo xxL2yly12g (x,y)dxdy. (23
3 fo fo I (k3)ji (ay) Bo(X,y)x*dxy’dy. In these equations we have definet3?/M 5B, whereB is

the 3H binding energy, and have incorporated appropriate
(18)  factors of B8 to makeD , dimensionless.



PRC 58 EFFECTS OF THREE-BODY FORCES IN THEH . .. 53

STATE 2 [(o o)o (0.2)21 STATE 12 [(1 1)2(1,2) ]

1.50 e 0.60 e
[ =-081] [ 2=+0.4 ] i =—0.8 ] z—+04
1.00F 1 ] 0.40f 1t ]
0.50}F - 0.20F JE
0.00} 1 E ] 0.00 [~
150 e e ———
[ z=-0.
1.00: 0.40f ]
0.50: 0.20F ]
0.00} L
) :...l...l...l...l ........ [ P P R 0'00_ “

STATE 9 [(11001.3)7] STATE 7 [(13)219)3]

[ I:—. 1 —+ 0.30_'-'|-"|"'|"'|'-'_
0.00f z=—081| 2=+04 : 2=-081 [ 2= +0.4 ]

0.20F it .

-0.05} :
X 0.10f

—0.0F T N o.oof

0.30 P

0.00} !
[ 0.20F
—0.05} :

0.10f
—0.10_1||I|||I|||I|||I|||- -|||I|||I|||I|||I|||- o.oo: : :/\\

STATE 15 [(2:2)0:03)3]
F2=—-08 ] z—+04 STATE18 [(3 1).2(1 2]
0.30¢ 2=-081 [ 2= +0.4 ]

o.10f :

0.00E ~= 1t ] 0.20F Central  § | ':

—o.10f 1t : T M 1t -
E N ] 0.10F ="~ BR ]

-0.20f 1 3 F T UR :

TETN T EUTE FUNT FEET B P T ———— 0.00:

00105_ . E- -; 0.30-"'|"'|"' Trrrrvo]

0.00F 1 E : -
E \,,/" 1t \/ ] 0.20}
-0.10F 1t 3 [
; 1E ] 0.10}

~020¢ 1t 3 .
Y 0.00f 1F
p (fm) 0 TR 00 T

p (fm)

FIG. 1. Calculateds-state components of thtH wave function FIG. 2. Calculated-state components of thi# wave function
plotted as a function of the hyperradius. The quantity shown isplotted as a function of the hyperradius. The quantity shown is
p*2¢,(p,2). The quantum number(l,,l,)L;(s,s)S] of each  p**¢.(p,2). The quantum number§(l,,l,)L;(s",s)S] of each
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FIG. 4. S-state components of the momentum-spatewave
FIG. 3. Calculated®-state components of thtH wave function  functions. The hypermomentum variabl@sand ¢ are defined in
plotted as a function of the hyper-radius. The quantity shown isEgs.(19) and(20). The quantity shown in the plots 8%?g,(Q, ).
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FIG. 5. D-state components of the momentum-spaeewave
functions. The hypermomentum variabl®sand { are defined in
Egs.(19) and(20). The quantity shown in the plots @%%9,(Q,?).
The quantum numbergl,,l,)L;(s’,s;)S] of each state are indi-
cated in the figure.
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FIG. 6. P-state components of the momentum-spaeewave
functions. The hypermomentum variabl®sand ¢ are defined in
Egs.(19) and(20). The quantity shown in the plots @%%9,(Q,?).
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