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We describe a new method for determining the asymptotic normalization constants®f ther+d wave
function. This method is based on a phase shift analysf_bf *He elastic scattering data, with high partial
wave parameters obtained from Coulomb-wave Born approximation calculatiomseicshange scattering.
Applying this analysis tdLi + *He elastic scattering &.,,=2.2 MeV, we obtain a value for the asymptotic
D- to Sstate ratio of théLi— a+d wave function of—0.025+0.006+ 0.010.[S0556-281@9)01802-§

PACS numbe(s): 27.20+n, 24.10-i, 25.70-z

I. INTRODUCTION exchange process plays an important role, it is reasonable to

suppose that the measuremefdspecially at back angles
There is considerable interest in experiments that can prare sensitive to details of tHdi— a+d wave function. The

vide information about the internal structure of tifki difficulty is to find a reliable method for extracting the de-

nucleus. As recently as a few years ago, exact quantunsired information.

mechanical calculations of bound state properties were pos-

sible only forA=3. However, in recent years there has been 10°

a significant amount of progress in extending these realistic oz | 1T
calculations to higher values & (see, for example, Refs.
[1,2]). This progress has added new relevance to measure T 0.0
ments of the internal structure of few-nucleon systems. ’I{a\ 20

The importance oD-state components of light nuclei is ~ —02 - ]
well understood. In general tHe-state terms arise from the 'E 10°
tensor force, and consequenilystate observables allow us ~— —0.4 | 7
to test our understanding of this component of M po- <& S
tential (see Refs[3,4]). In °Li, the small, negative quadru-  ®© oz T
pole moment indicates that the tensor force plays a role, bu
obtaining further information about the nature of the non- 0.0 Ragnet
isotropic components of the bound state wave function has Ta V
proven to be difficult. Experimentally, the most directly ac- T T T T -02 .
cessible quantity is the asymptofizstate toS-state ratio of 0z L ]
the ®Li— a+d component of the wave function. The deter- I ] -04 | -
mination of thisD- to S-state ratio, which we designate as 0.0 [ 1 o
has been the subject of several previous experimental an i ] o2 T T
theoretical studies. The results obtained to date will be sum- -0z | . '_..,{)&
marized in Sec. Il. iT,, 0.0

Our purpose in the present paper is to describe a new -04 |- 1 T,
method for determiningy. This method involves the analy- oz L J
sis of polarization measurements fflci +*He elastic scat- 06 - 7
tering at low energies. In our analysis we make use of mea: 04 ]
surements from Ref5] atE. ,=2.2 MeV. It is believed 6] Rl it I T O R TRTaT T

i H i H H 0 30 60 90 120150 180

that in this low-energy region there are large contributions to o (deg) 6 (deg)

c.Im. cm

the scattering amplitude from the exchange scattering pro-
cess in which a deuteron is exchanged between the two FIG. 1. Differential cross section and analyzing powers for

a-par_tlcle cll_Jsters. _Thls gives rise to a strong back-angle| |+ 4He elastic scattering &, ,=2.2 MeV, from Ref[5]. The
peak in the differential cross sectigsee Fig. 1 Because the  error bars represent statistical errors only. Normalization errors are
4% for the differential cross section data, and about 10% for the
analyzing power data. The solid line is a guide for the eye. The
*Present address: Department of Physics, Wittenberg Universitydasheddash-dottefline is the result of an optical model calcula-
Springfield, Ohio 45501. tion using the set Iset 2 parameters in Table I.
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Processes that involve exchange graphs have frequentheen reported for this calculation. Finally,°ai wave func-

been analyzed in the past to obtain information aboution with »=—0.07 has been obtained by variational meth-
asymptotic wave functions. In few-nucleon systems this hagds[16], although the quadrupole momer€ —0.8) for
most often been done by employing the “pole- this wave function is far too large in magnitude. A more
extrapolation” method7]. This method is based on the ob- recent calculatiofi2] gives a better result for the quadrupole
servation that for reactions involving exchange contributionsmoment[ Q= —0.33(18) fnf], but 7 is not reported. The
the analyzing powers at the location of the exchange pol@uthors of Ref[2] point out that these variational method
depend in a simple way on the asymptotic wave functioncalculations are not very sensitive to the long-range proper-
normalizations. The complication of this method is that forties of the wave function, and so the values obtainedfor
physical values of the incident particle energy, the exchanggnd 5 are not yet expected to be reliable.
pole is located at an unphysical angle., an angle wite Only a few experimental studies of th&i—a+d D
=cosf<—1). Therefore, what is normally done is to fit the state have been carried out. Bornaidhl. [17] performed a
measured observables in the physical region with some fungorward dispersion relation analysis df« elastic scattering
tion, and then use that function to extrapolate the measurgtata and obtained values for the magnitudes of Stetate
ments to the pole, thereby allowing a determinationsof  andD-state asymptotic normalization constants. The sign of
The treatment of systematic errors in the extrapolation is &, js not determined by this method, but the magnitude was
difficult and controversial aspect of this methtgke Refs. found to be| 7| =0.005=0.014.
[8-10). The proper treatment of Coulomb effects is also  More recently, Santost al.[18] compared tensor analyz-
problematic. The effect of Coulomb repulsion between thq g powers forGLi(& @) at 10 MeV with distorted-wave
projectile and the target is to change the pole into a cut, an orn approximatior([SWBA) calculations that included the
there are further complications s in °Li+*He elastic effects ofD states in both théHe—d+d and Li— a+d

sca#]ermg the eﬁ:hgmged _F;laglde 'Its) aEO chard%d].th d.fcluster wave functions. This group found that best fits to the
__1he new method we will describe here avolds these Aty were obtained for- 0.015< 7<—0.010 when a*He
ficulties that are inherent in a pole-extrapolation analysis

The approach we use is to determigeby performing a wave function withD-state parametdd,= —0.2 was used.
restricted phase shift analysis of tifei +*He elastic scat- Another determination of was reported by Punjakt al.

tering data. The basic idea is as follows. For our kinematicsglg]éﬂho measured tensor analyzing pow@ at 0.8° for
the exchange amplitude, when viewed as a function of en-H(°Li,d) at 4.5 GeV. The measurements were then com-
ergy andz=cos6, has a cut that begins at= —1.36. Since pared with plane-wave impulse approximation calculations

. . 6 .
the branch point is close to the physical region, it is clear thaPf T20(d), whereg is the relativea-d momentum. A°Li

an expansion of the amplitude in powers of éosill con- ~ Wave function with 7~0.02 (obtained from a three-body
verge only slowly. This implies that in a partial-wave analy- M0de) predicts analyzing powers with the correct sign but

sis the exchange scattering contribution converges slowly a3/ghtly smaller in magnitude than the measured analyzing
a function ofl. In contrast, one can shoisee Sec. Ill Gthat ~ POWers. These data thus favor a small but posifivetate to

the direct scattering contributions converge rapidly. As a reS State ratio at smatj values. o _
sult, one finds a “window” in angular momentum space in  Finally, Greeret al.[20] have comparedLi +“He elastic

which exchange scattering dominates by an order of magngcattering data ak.,=11.1 MeV to optical model plus
tude or more over the remaining direct scattering contribut-€xchange calculations, including transfers frogighd 1D
tions. Within this window the extracted phase shifts arecomponents of the ground-stafe;l wave function. They
small (typically only a few degre@sFrom this we infer that find that, in order for the galculat|or_ls to not disagree with the
the scattering is “weak,” which means that the exchangeMéasured tensor analyzing powés particular, Tz, the
scattering for these partial waves can be accurately calc2-State spectroscopic amplitude must lie in a range that, for
lated in Born approximation. The parameters of the boundtheir wave function, corresponds to 0:8¢> —0.08. _
state wave function can thus be related to the elastic scatter- In summary, neither the experimental nor the theoretical
ing measurements by carrying out a phase shift analysis th&gterminations ofy give unambiguous results. The two re-
makes use of these calculated exchange scattering contrib§€nt experiments at low energies seem to favor a negative

tions in the higher partial waves. The method is described ityalue forz. However, it is not yet clear whether a negative
more detail in Sec. IlI. 7 is theoretically compatible with the measured value of the

quadrupole moment.

Il. PREVIOUS STUDIES OF °Li D-STATE PARAMETERS
Ill. EXCHANGE SCATTERING CONTRIBUTIONS

Several theoretical predictions far have been obtained, TO PHASE SHIFT PARAMETERS
based on various models of tif&i wave function. Lehman
and his collaborator§12,13 have used three-bodyafip)
models to obtainy=0.01. Nishiokaet al. [14] employed a We begin with a brief description of our method for de-
simple a+d cluster-model and found that wave functions termining » from ©Li+“He elastic scattering data. The first
with 7~ —0.014[3] reproduced the experimental value of step is to use the distorted-wave Born approximation
the ®Li quadrupole moment. A recent shell-model calcula-(DWBA) (see Ref[21]) to calculated-exchange scattering
tion [15] predicts a quadrupole momeQt= —0.067 fnf, in  contributions to the higher partial waves. In this calculation,
good agreement with the currently accepted experimenta ®Li— a+d cluster wave function with botB- andD-state
value of —0.082, but unfortunately no results foy have  components is used at the reaction vertices. Coulomb waves

A. Overview
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are used in the incoming and outgoing channels. The ex- &
change amplitude calculated in this way is then used to ob- r
tain the S matrix (see Ref[22]). From theS matrix, phase

shifts and mixing parameters are extracted as outlined in Sec. g

[l1 B. As discussed in Sec. Il D below, the phase shift pa- r d d
rameters obtained from thiS matrix have a simple depen-
dence on the asymptotic normalizations of i@ndD-state FIG. 2. Definition of the coordinates used in the distorted-wave

components of the wave function. This makes it possible td3orn approximation calculation for the initideft) and final(right)
determine the asymptotic normalizations by carrying out &states.
phase shift fit to®Li+“*He elastic scattering data.

In the phase shift fit, the parameters describing the lowfunction, 5" and y&) are theSLi +“He scattering wave
partial waves are allowed to vary freely. The high partialfynctions with, respectively, ingoing and outgoing spherical
wave parameters are taken from the calculation, with approyave boundary conditions, andis the transition potential.
priate scale factors incorporated to allow for variation of theThe coordinates for the initial and final states are defined in
S andD-state asymptotic normalizations. These scale factorsig. 2. For the scattering wave functions we use a purely
are then varied along with the lolyparameters to obtain the Coulomb interaction corresponding to a uniformly charged
best fit to the data. sphere of radius 4.4 fm. The transition potentidhcludes a

To demonstrate that this general approach is reasonablgy|| three-body Coulomb term at each vertex. Since the cal-
we need to establish a few points. First, one must show thafylations employ Coulomb distorted waves we refer to them
the contributions from the exchange scattering converggs CWBA calculations.
more slowly as a function df than do the direct scattering  The calculations were performed using a locally modified
contributions. This point is the subject of Sec. Ill C. It is alsoversion of the full finite-range DWBA codeTOLEMY [23].
necessary to show that the phase shift parameters depend 9§ test the numerical calculations, we performed an analytic
the asymptotic parts of thélLi—«+d wave function, and  calculation of the exchange amplitude in plane-wave Born
are insensitive to the interior details. This point is addressedpproximation (PWBA), and compared the resulting
in Sec. Il D. The details of the exchange scattering calculasmatrix elements with the results effoLEMY calculations

tion are given in the following section. in which the Coulomb potentials were set to zero. With the
appropriate sign conventions for tleroOLEMY matrix ele-
B. Calculation of the exchange scattering ments, there is good agreement between the analytic results
partial-wave parameters and thePTOLEMY results.

In this section we give a more detailed description of the After obtaining theSmatrix elements in the CWBA from

method used to calculate the exchange scattering amplitu«feTOLEMY’ we extracted the phase shifts and mixing param-

and the corresponding phase shift parameters. As noted e%tiers. For mixed angular momentum states, we used the

lier, we begin with the distorted-wave Born approximation. >/at-Biedenharn parametrizatid24] in the Born approxi-

In this approximation the exchange amplitude given b mation limit (that is., for small phase shiﬂs and mixing pa-
PP 9 P 9 y rameters The relation between th&matrix elements and

the phase shifts and mixing parameters is, for unmixed an-
== a2 f E(TIXE ™ (kT IV u(DXE (ki )dr.  QUlar momentum states
D S=e?9~1+2i6 2

In this expressionp,; is the ®Li cluster bound-state wave and for mixed states

. . 1 ) .
C052 e2'5l+sin2 eZ|52 T o 26y _ q2i6, . .
e e 5 Sin2e(e™% =€) 142i6,  2ie(8,- )

> ~2i i ()
! i [ i . i 2ie( 61— 0. 1+2ié
ESin 26(62'51— ez'ﬁz) cof e e2%girte 21 (61— 0) >
|
Here Sis the Smatrix element obtained from theroLEMY C. Comparison of direct and exchange
calculation, thed’'s are the phase shifts, ard=€e(j™) is the scattering contributions

mixing parameter that connects two states having the same As we have mentioned earlier, our method for determin-
total angular momenturpand paritys. Given theSmatrix  ing  relies on the assumption that the direct scattering con-
elements, it is then straightforward to obtain the phase shiftgibutions converge rapidly as a function lpfso that a win-

and mixing parameters which are needed for the phase shifiow exists in angular momentum space in which the
analysis. exchange scattering contributions dominate. Using the



PRC 59 DETERMINATION OF THELi—a+d ASYMPTOTICD- TO ... 601

TABLE I. Optical model potential parameters for the calcula- M DL B
tions shown in Fig. 1. Set 1 is the tenth set in Table 1 of R28]; 6
set 2 is the sixteenth set in the same table. A Coulomb potential
with R=3.49 fm andR=3.60 fm, respectively, was also included. 14
>
o _
Optical model parameters: 2 2
V (MeV) R (fm) a (fm) . 0
Set 1
real central 188.7 3.49 0.64 -2
volume imaginary 9.4 3.49 0.64 0 5 10 5
Set 2 r (fm)
real central 150.7 3.60 0.43
volume imaginary 11.2 3.60 0.43 FIG. 3. Radial dependence of the real part of the s@iable )

potential plus the centrifugal potential f6Li+*He elastic scatter-
ing atE. ,=2.2 MeV, plotted for angular momenta 0 through

method outlined in the preceeding section we can now easiISF 4.

determine the exchange scattering as a functidnlofs also

fairly straightforward to make reasonable estimates of th&smatrix elements for both of these optical model potential

convergence rate of the direct scattering. parameter sets. The phase-shift parameters obtained from the
In a semiclassical picture one expects the direct scatteringptica| model are found to be substantial fst3, but above

to be significant up to a ma>_<imum relative orbital angular|%3, these parameters fall off quickly. By=5, the phase

momentuml,;<kR wherek is the wave nl.!lmber for the gt parameters derived from the optical model calculations

relative motion, andR~R; +R,. For °Li on "He atEem.  are 411 0.09 degrees or less. Also shown in Table I are the

=2.2 MeV, withRi=1.547", we obtainl na=3. This SUg- 156 shift parameters obtained from the exchange scattering

gests that the direct scattering contributions should be smally;cjations described in Sec. Il B. For ease of comparison

beyond| =3. the phase shifts for eadthave been averaged ojeiWe see

Th's result can b_e tested more ngorous_ly by USINg any -t the CWBA phase shifts fall off by a factor of 2—3 per
optical model to estimate the direct scattering. The optica | her than th ical f . el
model calculations were carried out with a code that makeva ue rather than the typical order of magnitude paalue at

use of subroutines borrowed frorroLEMY. Calculations fargel for the thical model phase shifts. A3 the ex-
were performed with nine differerfiLi +“He potentials ob- change scattering phases are roughly an order of magnitude
tained from Refs[20,25. In Fig. 1, we show the results of larger than the corresponding direct scattering phase shifts

calculations of the differential cross section, correspondingPtained from the optical model.
to two representative optical model potentiéitse tenth and From the values in the table, it is also apparent that for
sixteenth parameter sets listed in Table 1 of R2E]). The =3, where the exchange scattering dominates over the di-
Woods-Saxon parameters for these two potentials are giveligct scattering, the exchange scattering phase shift param-
in Table I. The first of the two potentials gives the largesteters are small in magnitude. This supports the assumption
phase shift parameters at higbf the nine potentials tested. that the exchange scattering contributions for the tighl-
The second potential produces what we judged to be the beses can be accurately calculated in the Born approximation.
overall fit to the data. Note that both potentials produce a
back-angle peak in the cross section, but this peak is at least  p. Sensitivity to asymptotic normalization constants
an order of magnitude smaller than the data. Because this
failure to reproduce the size of the back-angle peak is a gen-
eral feature of the optical model potentials we examined a
this energy, we take this as evidence that exchange scatteri
is important.

In Table Il, we list the phase shifts obtained from the

Next, we address the question of whether the method we
ave outlined is capable of providing reliable information

out the asymptotic parts of the wave function. In particu-
lar, we wish to demonstrate that the exchange scattering am-
plitudes for largd are insensitive to the details of the interior
of the bound statéLi wave function.

There are good reasons to expect that this might be the
case. Since our analysis is being carried out at low energy
and since we are concerned only about latgé can be
argued that the reactions take place peripherally. In Fig. 3 we
show the radial dependence of the effective poteri€alu-

TABLE II. Comparison of average phase shifis degrees
extracted from the optical model calculations of Table I, and from
CWBA calculations of the exchange amplitude.

phase shifts setl set2 cwBA lomb plus centrifugal plus nucleafor | =0 throughl=4.
3s -33.2 —22.8 137.9 The nuclear potential used to generate these curves was the
3p 38.5 -22.9 —63.0 set 2 optical model potential of Table I. The point here is that
D —-0.62 0.56 24.4 for high| the Coulomb plus angular momentum barrier keeps
F 0.64 —-0.49 -9.0 the target and projectile well separated. For example] for
3G 0.42 —0.09 3.3 =4 the minimum separation is about 10 fm if we neglect
3H 0.09 0.004 ~13 tunneling(the barrier penetration probabilif26] in this case

is about 0.04
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then combined to obtain the best fit asymptotic normalizatiommultaneously if one includes the 4 state at E,

parameters. =6.56 MeV along with a 1 state at 6.87 Me\/30]. If one
then subtracts the resonant contribution from #g phase
IV. THE PHASE SHIFT ANALYSIS shift, the remaining--wave phases are reasonably consistent
with the expectations for pure exchange scattering.
The °Li+“He elastic scattering angular distributions used  In carrying out the trial fits it was found that several dif-
in the phase shift analysis were obtained at the University oferent phase shift parameters are capable of providing useful
Wisconsin tandem accelerator laboratory. Angular distribuinformation about thé®-state normalization. For our “final”
tions for the differential cross section, the vector analyzingit we included in the high-group all the mixing parameters
poweriTy;, and the tensor analyzing powers,, Ty, and  for j=5, the 3F;—3F, splitting, and all of the=4 phase
T,, were obtained at &Li incident energy of 5.5 MeV. The shifts. In principle, each mixing parameter and each phase
data, shown in Fig. 1, have typical normalization errors ofshift splitting could provide a separate determination of the
4% (cross sectionand about 10%analyzing powens The  D-state multiplicative factor. However, because the uncer-
experiment is described in more detail in R]. tainties in these parameters are correlated, we used a single
The phase shift analysis of the data was performed with @ommon D-state multiplier for all parameters sensitive to
code that uses the CERN library routimenuiT [28] to per-  this quantity.
form the least-squares minimization. We carried out a large The decision to include théF;—3F, splitting as one of
number of fits before reaching our final conclusions. In anythe parameters that determines the asymptotic normalizations
given fit the various parametetphase shifts, inelastic pa- requires some justification. We note, first of all, that there are
rameters, mixing parametgraere divided into two groups. no nearby 2 or 3~ states in the'®B compound nucleus, so
The parameters in the logroup were treated as purely these partial waves should be unaffected by resonance con-
phenomenological quantities which are freely adjusted in theributions. Second, we find that th@-state normalization
fit. The parameters in the highgroup were calculated from determined from this parameter alone is consistent with the
the exchange amplitudes with adjustaBleandD-state mul-  value obtained from the remaining parameters. With this in
tiplicative factors. In all of our fits, the th&, P-, and  mind, we believe that the decision to include the;—3F,
D-wave phase shifts and inelastic parameters and the mixingplitting is justified, with the understanding that the final sys-
parameters foj =1 throughj =4 were included in the low- tematic error should reflect the uncertainties associated with
| group. possible nonexchange contributions. The assumption that the
One of the important steps in the analysis is to decide =3 partial waves are dominated by exchange scattering is
which parameters should be included in the highroup.  certainly consistent with the results given in Table II.
These parameters eventually determine the asymptotic nor-
malizations, and therefore one is assured of obtaining reli- V. RESULTS
able results only if the corresponding partial waves are in-
deed dominated by exchange scattering. One of the main Our final fit to the angular distribution data was obtained
criteria we use in making this decision is consistency. It iswith the parameters shown in Table Ill. This set has 26 free
possible to generate many different phase shift(fits ex-  parameters, and provides a fit to the data witp?aper de-
ample, by moving parameters between the Higmd low! gree of freedom of 1.27, corresponding to a confidence level
groups or by floating or not floating the overall normaliza- of 4% (see Fig. . The phase shifts for<|=<8, the mixing
tions of the datpand if the analysis is reasonable one shouldparameters for 5j<9, and the®F;— °F, splitting were all
obtain consistent results for the asymptotic normalizations adetermined from the exchange calculations, and scaled using
the details of the fit are varied. If a particular phase shifttheS- andD-state multiplicative factors. The overall normal-
parameter seems to require asymptotic normalizations whictzations of the individual cross section and analyzing power
are consistently well away from the values preferred for theneasurements were treated as free parameters in this final fit,
majority of the parameters, one concludes that this parametéut the results obtained for these quantities are consistent
is affected by nonexchange contributions. with the normalization errors quoted in RE].
In our initial attempts to fit the data set we found that Scaling theS- and D-state amplitudes of our origin&Li
large splittings were required for all partial waves up throughwave function by the renormalization parameters of our final
and includingl =3. We were particularly concerned about fit gives the result C;=2.91+0.09 and C,=-0.077
the F-wave splittings since these seemed larger than one-0.018. This yieldsy= —0.026+0.006, where the error is
could explain either by exchange scatterifwghich should purely statistical. Note that the value fGy, is in good agree-
produce only small splittingsor by direct scatteringwhich ~ ment with that obtained by Blokhintsest al. [31] from an
was expected to be small foe=3). It is now clear that the energy-dependenfHe+d phase shift analysisC,=2.93
large F-wave splitting is caused by a 4 state atE, +0.15.
=6.56 MeV in the'®B compound nucleus which is close to  The statistical uncertainty for each fitting parameter was
the energy at which the measurements were obtaifigd ( determined in the usual way, as the square root of the corre-
=6.66 Me\). To verify that this is the correct interpretation sponding diagonal element of the error matrix. For a given
we carried out a separate phase shift fit of the data shown iparameter, this is equivalent to the change in that parameter
Fig. 1 together withPLi( «, @) 5Li excitation functiong29] at  that would increase the overalf by 1, where the remaining
six angles covering®B excitation energies from 6.44 to 6.68 parameters are varied to minimia&. This procedure was
MeV. We found that the analyzing power measurements andsed to obtain the statistical errors f6f and C, quoted
the energy-dependent cross sections can be reproduced above.
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TABLE IIl. Adjusted phase shift parameters for the fit shown in 10° e T
Fig. 5. The 4<I<8 phase shifts and the5j<9 mixing param- : 02 - ]
eters were determined from the exchange scattering calculations i 1 Meed
scaled by the appropriatg& and D-state multipliers. All phase I | 0.0 * o
shifts, mixing parameters and inelastic parameters are given in de Tzo
grees. 2 I 7 o0z L ]

FQ 2
j=1-1 - o1 EOF EREYY ]
Phase shifts: % oz F : : : : : .
I=0 —53.41 )
I=1 —29.23 —17.08 —19.30 F 1 00 e
=2 64.64 33.71 4.95 T ’
1=3 ~6.23 4948  —14.26 0" bobobobodod 21 v
Inelastic parameters: ;' LU A '; 0% p
=0 0.0¢ 02 - ] oal 1
=1 7.10 8.69 8.97 [ ] ’ L
|=2 0.41 008  0.99 00t : op [T
=3 1.03 1.0F 1.0F oz ] a‘ﬂ
Mixing parameters: iT L, ] 0.0
e(17) e(2") €3) €47 YRS J T
16.04 4.63 1994  -0.97 : 12 1
Normalizations: —06 I~ =t/ ]
a(0) iTy Tao To Ta [ ] —04 - N
1.02 1.08 1.01 1.02 1.09 A i I B T LN
- oli . 0 30 60 90 120150 180 0 30 60 90 120 150 180
S- and D-state multipliers: Noe 1002003 6. (deg) 6. (deg)
Np=1.12+0.27 FIG. 5. 8Li +*He elastic scattering data B ,,= 2.2 MeV, with

the phase shift fit of Table ll{solid line). The normalization of the

&Th litti f the®F d3®F; ph determined fi th
e splitting of the’F, and *F5 phases was determined from the = == "0 adjusted.

S andD-state multipliers.

b|nelastic parameters listed as 0.00 reach unphyéheajative val-

ues in the fit and are therefore fixed at zero. Next, we explored possible systematic errors associated

“The F-wave inelastic parameters were constrained to be equal. with the calculation of the high-phase shift parameters.
First, we tested the sensitivity of our results to the nonas-

. 6 . .
The remaining problem is to estimate the systematic error¥mptOtIC parts of the’Li—a-+d wave function that was

We do this by looking at the variation of th@, and C, used in the exchange calculation. For each of the six addi-

values as we change the conditions of the fit. For example, ional wave functions described in Sec. Il D, we recalcu-
series of fits was carried out with different starting param-/ated thed-exchange phase shifts and mixing parameters and
eters. These fits produced at most a few percent change in th§€d these in a new phase shift fit. In no case did the value of
S and D-state renormalization factors, and a change in the7 determined from the fit change by more thai.001. In
resulting value ofy of no more than about 0.001. Fig. 6, the radial wave function used in the final fit reported
Next we performed several different fits with various in- in Table Ill, as well as the wave function that produced the
elastic parameters fixed or varying freely. For these fits, th@reatest change ip (the wave function from Ref{20]), are
value of » changed by no more than0.003. shown for comparison. Based on these results, the systematic
We also looked at the effect of truncating the phase shiferror in  due to the choice of wave function is taken to be
expansion at smaller values lbfPerforming new phase shift +0.001.
fits with the L-, K-, andl-wave phase shift parameters and  In addition, we estimated the systematic error that arises
the j=6 throughj=9 mixing parameters set successively from the assumption that contributions to the Coulomb dis-
equal to zero changeg by no more thant 0.004. torted waves from nuclear potentials are negligible. We re-
We then investigated the dependencenobn the choice calculated the exchange contributions to the phase shift pa-
of parameters to be included in the higlgroup. The param- rameters, using three differenfLi+“*He optical model
eters that seem to have the largest effectzoare the®F,  scattering potentials in the incoming and outgoing scattering
—3F, splitting and theG- and H-wave phase shifts, with channels. The optical model potentials used were the tenth
some additional significant contributions from thg*) and  and sixteenth parameter sets from Table 1 of R&%] and
€(67) mixing parameters. The role of each of these paramthe second set from Table 2 of R¢R0]. The first two pa-
eters was investigated by moving the parameters, one by onegmeter sets were the same ones used in the calculations
from the hight group to the low+ group and performing a shown in Fig. 1. The third set includes a spin-orbit potential.
new fit. In no case did the resulting value gfchange by The resulting phase shift fits produced values;dghat differ
more than+0.012, with the typical change being about by no more than+0.004 from that obtained using hidh-
+0.008. phase shift parameters calculated in the CWBA. Taking all
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