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Let us now define a set of three functiors, in which  where summation over thg is meant to imply summation
the ingoing-wave amplitudess; are defined according to the over all |I-s values associated with each particullr. To
rule proceed we now construct the full scattering wave function
by making a superposition of scattering eigenstates in which
ag=Uup (4.10  the ingoing waves match those ¢f,.. Starting from Eq.

(4.12 one readily obtains
so that

. 2 Unpba— X5+ 2 Supx2" (4.17
¢a_>% UapX B+ 2 Spylla,x 3| (4.11 @ @
Y

and so the full elastic scattering wave function can be written
Then by making use of Eq4.4) and by recalling thatiis  in the form
real and unitary and th&, is diagonal, one may easily re-
write these functions in the form
va”dz47rj2ﬁ (Sp¥pSavalssv)(l gm,szv|IM)
M,v,m

¢a—>§ uaBXE‘F ezig‘l% uaﬁX%m. (412
X

> uam)vrg*(ki). (4.18
From this last result one can see why these particular ¢
functions are referred to as the eigenstates of the scattering
matrix. If we prepare an ingoing-wave state made up of thetai
particular linear combination of partial wave amplitudes
specified in Eq(4.10, then the resulting outgoing wave is
just an overall phase?'%«, times the same linear combina-
tion of outgoing partial wave amplitudes.

For our purposes, the importance of this result can be se
by inserting the definitions of'™ and x°!! into Eq. (4.12.
After some manipulation one obtains

The generalized form of Watson's theorem is then ob-
ned by substituting this result into E®.16. We replace
the scattering eigenstates, with quantities| «;JM) defined

in Eq. (4.14 and thus our expression for the transition am-
plitude involves matrix elements of the form
e%a;JM|T,_)}|¢‘,§e>. We then introduce reduced matrix ele-
ments defined by the formula

(@ IM[Tia e = (LN Seo | IMN (@ || Ty | pre). (419

A 1 - . : '
¢a_>e'5a2 Ugp —) sin kir+5a_|ﬁz) ygfl' S, - Combining the various formulas we then obtain the final
B kir 2)77 result
(4.13
Lo 12
Recalling once again that the elements of the matrare Trowyrg™ —4w[m > (Sp¥p+SavalSsv)
real, we see that the wave functiogsg have a well defined ! ,f;,\’jl"‘fjiﬁq
behavior under the operation of time reversal. We introduce
states|a;JM) defined by the equation X(1 gm,sgv[IM)(LN,s.0]IM)
|a;IM)=€""%xgp,,, (4.14 XU g€ 2 (a;J]| TE|| o)

where§,, is the appropriate eigenphaseshift. Then, according n . m *TyM ([
to the arguments of Sec. Il C, these states must obey the MaiJl[ Tl bre) ]YIB (ki), (4.29

time-reversal transformation . L.
where, by virtue of Eq(4.19, it is seen that the reduced

O a;IMY= (=) M| a;0— M). (4.15 matrix elements must once again be real.

C. The generalized theorem V. DISCUSSION

Since we have now succeeded in identifying states that e have now reached the goal of obtaining a single for-
transform according to the rul@.26), we can readily obtain Mula which can be used as the basis of a matrix-element
the Watson theorem formula for the general case. To do s@nalysis ofp-d radiative capture data obtained at energies
we simply need to express the full scattering wave functiorPelow the deuteron breakup threshold. As we have outlined

in terms of the scattering eigenstates. previously, the approach one uses in such an analysis is to
From Egs.(3.6) and(3.7) the incident plane wave can be ftreat the reduced matrix elements as parameters and deter-
written in the form mine these quantities by fitting measurements.

The advantage of the present formulation over the con-
D ventional one is that the matrix elements are necessarily real.
l//inc—>47TJ <, (SpvpSavalSpv)(l M, S| IM) Information on the relative phases of the terms that appear in
M,v.m the sum over multipoles and angular momentum states is
i A derived from the elastic scattering channel. The assumption

n out mx
X(xgtXxg )YIB (ki), 418 \ye make is that the eigenphaseshifts and the mixing matrix



elements are known from a separate phase shift analysis of
elastic scattering.

In a conventional analysis, the matrix elements appearing
in the expansion off;; would be matrix elements of some
multipole operator taken between the bound state and a
partial-wave scattering stateb,f\g, 3, defined with the bound-
ary condition that the ingoing asymptotic wave should be a
pure angular momentum state involving only a sintle
combination. For these states the outgoing waves have a
relatively complicated asymptotic form that, in general, in-
volves all three eigenphaseshifts. As a result the phase of the
resulting matrix element is not apparent. In contrast, the ma-
trix elements used in the present formulation are defined in
terms of the eigenstates of ti&matrix, which have a sim-
pler asymptotic form that involves only a single eigenphase.
Since we use eigenchannel wave functions, we refer to the
matrix elements of Eq(4.19 as eigenchannel matrix ele-
ments.

The connection between the eigenchannel matrix ele-
ments and the conventional ones is fairly simple. We define
a set of matrix element paramet@$- andPM- by the equa-
tions

8ukwl? 1
PEL=—[ J||Te 5.1
@ h2c ’—2L+l<a [T éne (5D
and
8ukw|? 1
ML ([ . m
=— T , (6.2
@ [ 72c ’—2L+1<a [T #ne), (5.2

and then introduce a set of transformed matrix elements,
Rg= > U,z€%P,. (5.3

Except for a possible overall phase, these quantities appear
to be identical to th& parameters used by Seyler and Weller
[1]. In terms of these transformed matrix elements, the tran-
sition amplitude may be written as

1/2

2
(Spvp,sdvd|sﬁv)

T = —
)\O',vad ki 3B
M,v,m

2L+1

4

x[RgLH\RyL]Y{‘;*(Ri). (5.4

While the equations we have obtained for the transition
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whereW is a diagonal matrix whose elements are the Couextracted from the scattering wave function given in Eq.
lomb phase factors'?' associated with the individual angu- (4.18). Using the definition of¢, from Eq. (4.11) one ob-
lar momentum states that make 8pThe phase parameters, tains after some algebra

o), are obtained in the usual way,

o=argl'(l+1+i7p). (5.9

It may be noted, however, that one could use modified Cou-
lomb phases

W= 01— 09, (5.10

wVP,Vd_>4qT E <Spr,SdVd|SV><Im,SV|JM>

31,1788’
M,m,v

X[ 811185 XMsT Srgr 16X o IY™ (k). (AL)

To find the outgoing wave amplitudes we subtract the
incident plane wave, Eq3.6). Using the definitions ofy"

and y°“* from Eqs.(4.7) and(4.8), and inserting the formula

in place of ther,’s in making the transformation of E¢5.8).
The only consequence would be that the elemenSveduld
all be rotated by a common phasearg® which means that
the extracted eigenphases would changerpy and the re-
sulting transition amplitude would thus simply acquire an
additional overall phase.

The need to transform from the nucle@&matrix to the
complete Smatrix introduces some complications. In par-
ticular one finds that there is no simple relationship between

the mixing matrixu that diagonalize~§ and the matrixu that
diagonalizesS. Similarly the eigenphases &fare not related

in any simple way to the eigenphasesé)fThe procedure
one might follow to find the needed parameters would be to

use the elastic phase shift parameters to conséudind S

by the transformatiort5.8), and then rediagonalizéto ob-

tain the new eigenphases and mixing matrix elements.
VI. CONCLUSIONS

The use of Watson'’s theorem for the analysis low-energy

radiative capture reactions has been discussed in detail. Par-

ticular emphasis has been given to the question of how Wat-
son’s theorem can be used in situations in which there is
mixing between angular momentum states. Although the
present work focuses on thped capture reaction, the results
obtained here can be applied to other systems as well. The
main limitation is that Watson’s theorem is valid only in
situations in which there are no open reaction channels that
significantly reduce the flux in the elastic scattering channel.

It is anticipated that the formalism introduced here will be
employed in the near future to carry out a matrix element
analysis of a set op-d radiative capture measurements at
E.m=2MeV obtained recently in experiments at the Univer-.
sity of Wisconsin[16]. The results of this analysis will be
presented in a future publication.

o =
Vde 'Vde k

for spin-angle functions from E@3.5 one obtains the result

—4m > > (Sp¥p:Sqvalsv)(Im,sv|IM)

JLI,s,s! Vé,vé
M,m,m’,v,v’

X(Spvp,Savgls' v’ {I'm’,s"v'|IM)

1
Xﬁ[g/s"m_ 6|,| ! 55,5']

R ;. eikir V, V,
XY™ (k)Y (r)ki—rquPqud. (A2)

One may now read off the outgoing wave amplitude in spin
state v,’),vc’,. Adopting the standard coordinate frame for
elastic scattering in which the-axis is alongk; and the
y-axis is alongk; X ki we have

i7
— > [2|+1]l/2<spvp,sdvd|51/>
i J1l"ss

M,m’,v,v’

X(10,sv|IM)(spvyp,Savgls'v")
X{I'm’,s"v'|IM)

X[ 8111855~ e 1s]Y]T (6,0). (A3)

The formulas needed to incorporate the Coulomb scatter-
ing in an explicit way are found, for example, in REL7].

By using the analytic expression for the Coulomb amplitude
together with the partial wave expansion of the same quan-

tity one obtains the result
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APPENDIX

For completeness we record here the relevant formulas for
the elastic scattering amplitudes. These amplitudes are easily

V/V,.VV
p’d'pid

ﬁ

:eZiUo _0(0)511 V’év v/
P'"p "P'p

+i X [21+1]Y%(s,v, ,sqvglsY)
JI,1",ss
M,m’, v, v’

X(10,sv[IM)(spvy,Sqvgls'v")
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(1 ,m,’S,V,|JM>ei(w,+w|’>[5H,55’5’ We define the nucled®matrix elements to be
_e—i((r|+u'|')${sr Is]YIrT:/(G’O) , (A4) S]rS/’|S:e7|(UI+U|)§r31’|3, (A6)

and in a phase shift analysis the submatrixSdbr eachJ”

whereo, andw, are defined in Eqg5.9) and(5.10, respec-  Value would be parametrized in the form of E4.4),
tively, and whereC(6) is the Coulomb amplitude

S=u'su. (A7)
1 . .
C(6)= —== —L—g~inhlsi(012)] (A5) . . .
VA sinzf In the matrix element analysis of the capture reaction, one
2 then uses Eq5.8) to reconstruct the ful&matrix fromS.
[1] R. G. Seyler and H. R. Weller, Phys. Rev.20, 453(1979. R2536(1992.

[2] M. C. Vetterli, J. A. Kuehner, A. J. Trudel, C. L. Woods, R. [8] K. M. Watson, Phys. Re\05, 228(1954.
Dymarz, A. A. Pilt, and H. R. Weller, Phys. Rev. Leg4, [9] L. D. Knutson, L. O. Lamm, and J. E. McAninch, Phys. Rev.
1129(1985. Lett. 71, 3762(1993.

[3] J. Jourdan, M. Baumgartner, S. Burzynski, P. Egelhof, R. Hen{10] H. J. Rose and D. M. Brink, Rev. Mod. Phy&9, 306 (1967.
neck, A. Klein, M. A. Pickar, G. R. Plattner, W. D. Ramsay, [11] E. U. Condon and G. H. Shortlyfheory of Atomic Spectra
H. W. Roser, and |. Sick, Nucl. PhyA453, 220(1986. (Cambridge University Press, Cambridge, 1935

[4] W. K. Pitts, H. O. Meyer, L. C. Bland, J. D. Brown, R. C. [12] J. M. Blatt and L. C. Biedenharn, Phys. R&&, 399 (1952.
Byrd, M. Hugi, H. J. Karwowski, P. Schwandt, A. Sinha, J. [13] R. G. Seyler, Nucl. PhysA124, 253 (1969.
Sowinski, 1. J. van Heerden, A. Arriaga, and F. D. Santos,[14] The Madison Convention, ifProceedings of the Third Inter-

Phys. Rev. C37, 1 (1988. national Symposium on Polarization Phenomena in Nuclear
[5] M. C. Vetterli, J. A. Kuehner, C. Bamber, N. Davis, A. J. ReactiongUniversity of Wisconsin Press, Madison, 19/ .
Trudel, H. R. Weller, and R. M. Whitton, Phys. Rev. 38, XXV.
2503(1988. [15] M. E. Rose Elementary Theory of Angular Momentuiviley
[6] S. King, N. R. Roberson, H. R. Weller, D. R. Tilley, H. P. and Sons, New York, 1967
Engelbert, H. Berg, E. Huttel, and G. Clausnitzer, Phys. Rev[16] M. K. Smith, Ph.D. thesis, University of Wisconsin, 1998.
C 30, 1335(1984). [17] L. I. Schiff, Quantum MechanicéMcGraw-Hill, New York,

[7] F. Goeckner, W. K. Pitts, and L. D. Knutson, Phys. Rev5_ 1968.



