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2158 PRC 59L. D. KNUTSON
Let us now define a set of three functions,fa in which
the ingoing-wave amplitudesab are defined according to th
rule

ab5uab ~4.10!

so that

fa→(
b

Fuabxb
in1(

g
Sbguagxb

outG . ~4.11!

Then by making use of Eq.~4.4! and by recalling thatu is
real and unitary and thatS0 is diagonal, one may easily re
write these functions in the form

fa→(
b

uabxb
in1e2ida(

b
uabxb

out. ~4.12!

From this last result one can see why these partic
functions are referred to as the eigenstates of the scatte
matrix. If we prepare an ingoing-wave state made up of
particular linear combination of partial wave amplitud
specified in Eq.~4.10!, then the resulting outgoing wave
just an overall phase,e2ida, times the same linear combina
tion of outgoing partial wave amplitudes.

For our purposes, the importance of this result can be s
by inserting the definitions ofx in and xout into Eq. ~4.12!.
After some manipulation one obtains

fa→eida(
b

uabS 1

kir
D sinS kir 1da2 l b

p

2 DYJlbsb

M .

~4.13!

Recalling once again that the elements of the matrixu are
real, we see that the wave functionsfa have a well defined
behavior under the operation of time reversal. We introd
statesua;JM& defined by the equation

ua;JM&5e2 idafa , ~4.14!

whereda is the appropriate eigenphaseshift. Then, accord
to the arguments of Sec. III C, these states must obey
time-reversal transformation

uTua;JM&5~2 !J2Mua;J2M &. ~4.15!

C. The generalized theorem

Since we have now succeeded in identifying states
transform according to the rule~2.26!, we can readily obtain
the Watson theorem formula for the general case. To do
we simply need to express the full scattering wave funct
in terms of the scattering eigenstates.

From Eqs.~3.6! and~3.7! the incident plane wave can b
written in the form

c inc→4p (
J,p,b
M ,n,m

^spnp ,sdndusbn&^ l bm,sbnuJM&

3~xb
in1xb

out!Yl b
m* ~ k̂i !, ~4.16!
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where summation over theb is meant to imply summation
over all l -s values associated with each particularJp. To
proceed we now construct the full scattering wave funct
by making a superposition of scattering eigenstates in wh
the ingoing waves match those ofc inc . Starting from Eq.
~4.12! one readily obtains

(
a

uabfa→xb
in1(

a
Sabxa

out ~4.17!

and so the full elastic scattering wave function can be writ
in the form

cnp ,nd54p (
J,p,b
M ,n,m

^spnp ,sdndusbn&^ l bm,sbnuJM&

3S (
a

uabfaDYl b
m* ~ k̂i !. ~4.18!

The generalized form of Watson’s theorem is then o
tained by substituting this result into Eq.~2.16!. We replace
the scattering eigenstatesfa with quantitiesua;JM& defined
in Eq. ~4.14! and thus our expression for the transition a
plitude involves matrix elements of the form
^a;JMuTLlufHe

s &. We then introduce reduced matrix ele
ments defined by the formula

^a;JMuTLlufHe
s &5^Ll,scsuJM&^a;JuuTLuufHe&. ~4.19!

Combining the various formulas we then obtain the fin
result

Tls,npnd
524pF m iv

2p\2cki
G1/2

(
J,p,a,b
L,M ,n,m

^spnp ,sdndusbn&

3^ l bm,sbnuJM&^Ll,scsuJM&

3uabeida@^a;JuuTL
euufHe&*

1l^a;JuuTL
muufHe&* #Yl b

m* ~ k̂i !, ~4.20!

where, by virtue of Eq.~4.15!, it is seen that the reduce
matrix elements must once again be real.

V. DISCUSSION

We have now reached the goal of obtaining a single f
mula which can be used as the basis of a matrix-elem
analysis ofp-d radiative capture data obtained at energ
below the deuteron breakup threshold. As we have outli
previously, the approach one uses in such an analysis
treat the reduced matrix elements as parameters and d
mine these quantities by fitting measurements.

The advantage of the present formulation over the c
ventional one is that the matrix elements are necessarily r
Information on the relative phases of the terms that appea
the sum over multipoles and angular momentum state
derived from the elastic scattering channel. The assump
we make is that the eigenphaseshifts and the mixing ma
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elements are known from a separate phase shift analys
elastic scattering.

In a conventional analysis, the matrix elements appea
in the expansion ofTf i would be matrix elements of som
multipole operator taken between the bound state an
partial-wave scattering state,f ls,J

M , defined with the bound-
ary condition that the ingoing asymptotic wave should b
pure angular momentum state involving only a singlel -s
combination. For these states the outgoing waves hav
relatively complicated asymptotic form that, in general,
volves all three eigenphaseshifts. As a result the phase o
resulting matrix element is not apparent. In contrast, the
trix elements used in the present formulation are defined
terms of the eigenstates of theS-matrix, which have a sim-
pler asymptotic form that involves only a single eigenpha
Since we use eigenchannel wave functions, we refer to
matrix elements of Eq.~4.19! as eigenchannel matrix ele
ments.

The connection between the eigenchannel matrix
ments and the conventional ones is fairly simple. We de
a set of matrix element parametersPa

EL andPa
ML by the equa-

tions

Pa
EL52F8m ikiv

\2c G1/2 1

A2L11
^a;JuuTL

euufHe& ~5.1!

and

Pa
ML52F8m ikiv

\2c G1/2 1

A2L11
^a;JuuTL

muufHe&, ~5.2!

and then introduce a set of transformed matrix elements

Rb5(
a

uabeidaPa . ~5.3!

Except for a possible overall phase, these quantities ap
to be identical to theR parameters used by Seyler and Wel
@1#. In terms of these transformed matrix elements, the tr
sition amplitude may be written as

Tls,npnd
5

2p

ki
(

J,p,b,L
M ,n,m

F2L11

4p G1/2

^spnp ,sdndusbn&

3^ l bm,sbnuJM&^Ll,scsuJM&

3@Rb
EL1lRb

ML#Yl b
m* ~ k̂i !. ~5.4!

While the equations we have obtained for the transit
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2160 PRC 59L. D. KNUTSON
whereW is a diagonal matrix whose elements are the C
lomb phase factorseis l associated with the individual angu
lar momentum states that make upS. The phase parameter
s l , are obtained in the usual way,

s l5argG~ l 111 ih!. ~5.9!

It may be noted, however, that one could use modified C
lomb phases

v l5s l2s0 , ~5.10!

in place of thes l ’s in making the transformation of Eq.~5.8!.
The only consequence would be that the elements ofSwould
all be rotated by a common phase, 2s0 , which means that
the extracted eigenphases would change bys0 , and the re-
sulting transition amplitude would thus simply acquire
additional overall phase.

The need to transform from the nuclearS-matrix to the
completeS-matrix introduces some complications. In pa
ticular one finds that there is no simple relationship betw

the mixing matrixũ that diagonalizesS̃ and the matrixu that
diagonalizesS. Similarly the eigenphases ofSare not related

in any simple way to the eigenphases ofS̃. The procedure
one might follow to find the needed parameters would be

use the elastic phase shift parameters to constructS̃, find S
by the transformation~5.8!, and then rediagonalizeS to ob-
tain the new eigenphases and mixing matrix elements.

VI. CONCLUSIONS

The use of Watson’s theorem for the analysis low-ene
radiative capture reactions has been discussed in detail.
ticular emphasis has been given to the question of how W
son’s theorem can be used in situations in which there
mixing between angular momentum states. Although
present work focuses on thep-d capture reaction, the result
obtained here can be applied to other systems as well.
main limitation is that Watson’s theorem is valid only
situations in which there are no open reaction channels
significantly reduce the flux in the elastic scattering chann

It is anticipated that the formalism introduced here will
employed in the near future to carry out a matrix elem
analysis of a set ofp-d radiative capture measurements
Ec.m.52MeV obtained recently in experiments at the Unive
sity of Wisconsin@16#. The results of this analysis will be
presented in a future publication.
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APPENDIX

For completeness we record here the relevant formulas
the elastic scattering amplitudes. These amplitudes are e
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extracted from the scattering wave function given in E
~4.18!. Using the definition offa from Eq. ~4.11! one ob-
tains after some algebra

cnp ,nd→4p (
J,l ,l 8,s,s8

M ,m,n

^spnp ,sdndusn&^ lm,snuJM&

3@d l ,l 8ds,s8xJls
in 1Sl 8s8,ls

J xJl8s8
out

#Yl
m* ~ k̂i !. ~A1!

To find the outgoing wave amplitudes we subtract t
incident plane wave, Eq.~3.6!. Using the definitions ofx in

andxout from Eqs.~4.7! and~4.8!, and inserting the formula
for spin-angle functions from Eq.~3.5! one obtains the resul

cscat
np ,nd→4p (

J,l ,l 8,s,s8
M ,m,m8,n,n8

(
np8 ,nd8

^spnp ,sdndusn&^ lm,snuJM&

3^spnp8 ,sdnd8us8n8&^ l 8m8,s8n8uJM&

3
1

2i
@Sl 8s8,ls

J
2d l ,l 8ds,s8#

3Yl
m* ~ k̂i !Yl 8

m8~ r̂!
eiki r

ki r
f

p

np8f
d

nd8 . ~A2!

One may now read off the outgoing wave amplitude in s
state np8 ,nd8 . Adopting the standard coordinate frame f
elastic scattering in which thez-axis is alongki and the
y-axis is alongki3kf we have

M n
p8n

d8 ;npnd
5

iAp

ki
(

J,l ,l 8,s,s8
M ,m8,n,n8

@2l 11#1/2^spnp ,sdndusn&

3^ l0,snuJM&^spnp8 ,sdnd8us8n8&

3^ l 8m8,s8n8uJM&

3@d l ,l 8ds,s82Sl 8s8,ls
J

#Yl 8
m8~u,0!. ~A3!

The formulas needed to incorporate the Coulomb scat
ing in an explicit way are found, for example, in Ref.@17#.
By using the analytic expression for the Coulomb amplitu
together with the partial wave expansion of the same qu
tity one obtains the result

M n
p8n

d8 ;npnd
5e2is0

Ap

ki H 2C~u!dnp ,n
p8
dnp ,n

p8

1 i (
J,l ,l 8,s,s8
M ,m8,n,n8

@2l 11#1/2^spnp ,sdndusn&

3^ l0,snuJM&^spnp8 ,sdnd8us8n8&
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3^ l 8m8,s8n8uJM&ei ~v l1v l8!@d l ,l 8ds,s8

2e2 i ~s l1s l8!Sl 8s8,ls
J

#Yl 8
m8~u,0!J , ~A4!

wheres l andv l are defined in Eqs.~5.9! and~5.10!, respec-
tively, and whereC(u) is the Coulomb amplitude

C~u!5
1

A4p

h

sin2
u

2

e2 ih ln[sin2~u/2!] . ~A5!
.

en
y,

.
J.
os

J.

.
ev
We define the nuclearS-matrix elements to be

S̃l 8s8,ls
J

5e2 i ~s l1s l8!Sl 8s8,ls
J , ~A6!

and in a phase shift analysis the submatrix ofS̃ for eachJp

value would be parametrized in the form of Eq.~4.4!,

S̃5ũ†S̃0ũ. ~A7!

In the matrix element analysis of the capture reaction, o
then uses Eq.~5.8! to reconstruct the fullS-matrix from S̃.
v.
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