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The Ay Problem for p-3He Elastic Scattering
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We present evidence that numerically accurate quantum calculations employing modern internucleon
forces do not reproduce the proton analyzing power, Ay , for p- 3He elastic scattering at low ener-
gies. These calculations underpredict new measured analyzing powers by approximately 30% at Ec.m. �
1.20 MeV and by 40% at Ec.m. � 1.69 MeV, an effect analogous to a well-known problem in p-d and
n-d scattering. The calculations are performed using the complex Kohn variational principle and the
(correlated) hyperspherical harmonics technique with full treatment of the Coulomb force. The inclusion
of the three-nucleon interaction does not improve the agreement with the experimental data.
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Over the past decade, numerical calculations for three-
nucleon systems have reached a high degree of precision.
This has made it possible to carry out accurate quantum
mechanical computations for a variety of processes includ-
ing (i) N-d elastic scattering and breakup [1,2], (ii) N-d
radiative capture [3,4], (iii) photodisintegration of 3H and
3He [5,6], and (iv) electron-3H and electron-3He scattering
[4,7] (see Ref. [8] for a more complete list of references).
The calculations use a variety of approaches [8], such as
the Kohn variational principle, the Green Function Monte
Carlo method, or direct solution of the Faddeev equations,
and have made it possible to test our knowledge of the
pairwise nucleon-nucleon (NN) interaction and to study
effects of possible three-nucleon (3N) forces.

Calculations employing modern NN and 3N interactions
are capable of describing most of the experimental re-
sults for the processes listed above. However, there is a
well-known and large discrepancy for the N-d analyzing
power at low energies. What one finds is that the predicted
Ay values are significantly smaller in magnitude than the
measurements for both p-d and n-d elastic scattering. Re-
solving this “Ay puzzle” is a current and important area of
research [1,9].

In the present Letter, we extend some of the analyses de-
scribed above to the four-nucleon system. We will present
new accurate computations for p-3He elastic scattering at
low energies. We will also report new measurements of
the analyzing power for p-3He scattering which have been
obtained for the purpose of testing whether the Ay problem
occurs in this system as well.

Extending the accurate quantum calculations into the 4N
system is obviously of importance since it allows many
new and stringent tests of the nuclear interaction. For ex-
ample, accurate calculations of the alpha particle binding
energy B4 have been achieved recently [10–12], and it
has been found that the experimental value of the binding
energy is reproduced with the same NN and 3N poten-
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tials that fit the 3H binding energy. Since it appears that
no four-nucleon potential is necessary to explain the a-
particle binding energy, one might expect that NN 1 3N
interactions alone would also be sufficient to describe the
various four nucleon scattering processes.

The development of techniques for solving 4N problems
is also important for other reasons. Many reactions in-
volving four nucleons, such as d 1 d ! 4He 1 g or p 1
3He ! 4He 1 e1 1 ne (the hep process), are of extreme
interest from the astrophysical point of view. The theoreti-
cal description of these processes constitutes a challenging
problem from the standpoint of nuclear few-body theory.
Its difficulty can be appreciated by considering, for ex-
ample, the hep process. In Ref. [13] it was found that
the capture from the initial P-wave channels (“forbidden”
transitions) gives about 40% of the calculated S factor, and
this fraction depends critically on the correct description of
the dynamics of the continuum and bound 4N states.

Moreover, the study of 4N systems is important also
for testing the various many-body techniques developed
for studying systems with large �$4� numbers of particles.
These theories necessarily include a number of approxima-
tions whose consequences can be investigated by compari-
son with more sophisticated calculations. The 4N system
is the simplest system in which these checks can be advan-
tageously performed.

The new calculations reported in this Letter are based on
the Kohn variational principle and make use of correlated
hyperspherical harmonic (CHH) functions. The same ap-
proach has already been applied successfully for a variety
of 3N processes [2,14]. A previous application for study-
ing 4N scattering at zero energy was already reported [15].
In the present paper, we have improved our calculation to
determine P- and D-wave phase shifts. The convergence
of the P-wave shifts is rather slow and has required a large
technical effort to be achieved. Results will be reported for
calculations based on (i) the Argonne V18 NN potential
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[16] (the AV18 model), and (ii) the Argonne V18 NN po-
tential plus the Urbana IX 3N potential [10] (the AV18UR
model). The present calculations represent the first attempt
to study the effects of 3N forces on the p-3He scattering
observables at energies greater than zero. In this paper we
focus on low energies where the convergence properties of
our theoretical approach are more satisfactory and where
meaningful comparisons with the experimental data can be
performed.

The new measurements of the proton analyzing power
Ay for p-3He elastic scattering were obtained at Ec.m. �
1.20 and 1.69 MeV. The experiments were carried out
at the University of Wisconsin tandem accelerator labora-
tory. Polarized protons from a crossed-beam polarized ion
source [17] were accelerated, momentum analyzed by a
90± bending magnet, and transported to a 1-m scattering
chamber. The scattering chamber was filled with 43.4 Torr
of 99.95% purity 3He gas, and was isolated from the beam
line vacuum by a 4.44 3 1025 cm thick Ni entrance foil
located 1.27 cm from the chamber center.

Elastically scattered protons were detected by three rec-
tangular silicon surface-barrier detectors, 60 to 100 mm
thick, placed symmetrically on each side of the scattering
chamber. A slit assembly restricted the angular field of
view to 60.34±. The spectra were clean except for a small
contaminant peak that was well separated from the peak
of interest except at the most forward angle. At that angle,
background subtraction was performed.

After passing through the scattering chamber, the beam
entered a polarimeter in which the beam polarization was
determined using �p-a elastic scattering [18]. The po-
larimeter was filled with one-half atmosphere natural He
gas, and was separated from the scattering chamber by
a 2.54 3 1024 cm thick Havar foil. Because of the low
beam energies, we could not measure the beam polariza-
tion very accurately at the same time as data were being
taken. However, previous experience indicates that the
beam polarization does not normally change significantly
over time. Consequently, at least once a day we made a
careful measurement of the beam polarization by increas-
ing the beam energy to 4.0 MeV at the center of the po-
larimeter. At this energy, the polarimeter analyzing powers
are known to 2%. Each such careful measurement of the
beam polarization yielded a value between 0.79 and 0.84
with typical statistical errors of 60.01.

The new measurements are shown in Fig. 1. The error
bars include statistical uncertainties and also at the extreme
forward angle an estimate of uncertainty in the background
subtraction. There is also a scale factor uncertainty of 3%
due to beam polarization uncertainties.

We turn now to the theoretical calculations. Four-
nucleon scattering problems have been studied theoreti-
cally for a long time (see Ref. [19], and references cited
therein). Recently, increases in computing power have
opened the possibility for accurate calculations of the 4N
observables using realistic models for NN forces. These
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FIG. 1. Measurements of the proton analyzing power Ay as a
function of the scattering angle at Ec.m. � 1.20 MeV (panel a)
and 1.69 MeV (panel b). The theoretical estimates obtained
with the AV18 (solid curves) and the AV18UR (dashed curves)
interaction models are also reported.

calculations have been performed mainly by means of the
Faddeev-Yakubovsky (FY) approach [20,21] and the Kohn
variational principle [15,22]. In this Letter, the wave func-
tions of the scattering states are expanded in terms of the
CHH basis [14] and the complex form of the Kohn varia-
tional principle is applied [23,24].

The wave function (WF) of a 4N state with total angular
momentum J, parity P, and total isospin T , Tz (in the
present case T � Tz � 1) can be written as [15]

CJ
LS � CJ

C 1 FJ
LS , P � �2�L. (1)

The first term C
J
C of Eq. (1) must be sufficiently flexible

to guarantee a detailed description in the “internal region,”
where all the particles are close to each other and the mu-
tual interaction is large; C

J
C goes to zero when the distance

ri between the 3He and the unbound proton i increases.
This term in the WF is expanded in terms of CHH ba-
sis functions, following the procedure discussed in detail
in Ref. [25].

The second term F
J
LS describes the asymptotic configu-

ration of the system, for large ri values, where the nuclear
p-3He interaction is negligible. Let us introduce the sur-
face functions

V
�l�
LSJ �

4X

i�1

�YL�r̂i� �C
3He
jk� xi�S�JJzR

�l�
L �ri� , (2)

where xi is the spin function of the unbound nucleon i

and C
3He
jk� is the 3He bound state WF. This latter function

is normalized to unity and is antisymmetric under the ex-
change of any pair of particles j, k, and �. C

3He has been
determined as discussed in Ref. [14] by using the CHH
expansion for a three-body system.

The functions R
�l�
L �ri� of Eq. (2) are the ingoing

�l � 2� and outgoing �l � 1� radial solutions of the
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two-body Schrödinger equation without nuclear interaction
[24]. The asymptotic WF is then written as

FJ
LS � V

�2�
LSJ 2

X

L0S0

JS SS0

LL0 V
�1�
L0S0J , (3)

where the S-matrix elements JS
SS0

LL0 give the amplitude of
the outgoing �L0S0� component relative to the ingoing �LS�
wave. The elastic S matrix, whose dimensionality is 1 (2)
for the J � 0 �J . 0� states, should be unitary since there
are no open reaction channels at the energies considered
here. It follows that the eigenvalues of the S matrix are
written as exp�2idJ

LS�, where d
J
LS is the eigenphase shift

of the 2S11LJ wave. These quantities are calculated by
means of the complex form of the Kohn variational prin-
ciple with a procedure similar to that one used in the N-d
case [14,24].

Note that with the present method the unitarity of the
S matrix is assured only after the complete convergence
of the CHH expansion. Thus, for example, in the case
of the J � 0 waves, the calculated S matrix will be of
the form 0S

SS
LL � hJP exp�2id0

LS� where the “inelasticity”
parameter hJP may differ from 1 if the convergence is
incomplete. For J . 0 states, the inelasticity parameter
can be defined as hJP �

p
Tr�Sy ? S ��2.

The expansion of the internal part C
J
C is conveniently

studied by grouping the functions of the basis in “chan-
nels” (a given channel contains CHH states with the same
angular-spin-isospin quantum numbers). The convergence
of the L � 0 waves �JP � 01, 11� at Ec.m. � 0 was stud-
ied previously in Ref. [15]. At Ec.m. � 0 and at the ener-
gies considered here, a rather small number of channels
is sufficient to provide a good convergence. This is due
mainly to the Pauli principle which limits overlaps be-
tween the four nucleons. As a consequence, the internal
part is rather small and does not require a large number of
channels.

In contrast, for the L � 1 waves (JP � 02, 12, and
22) the convergence rate is slow and many channels have
to be included. In these cases, the interaction between the
p and 3He clusters is very attractive (it has been speculated
that some 4N resonant states exist), and the construction
of the internal wave function is more delicate.

An example of convergence for the 02 and 22 states is
reported in Table I (in the J � 2 case the results are rela-
tive to the L � S � 1 wave). The calculation has been
performed using the AV18 potential at Ec.m. � 1.69 MeV
for a few values of the number Nc of channels included in
the expansion of C

J
C . The values hJP 	 1 for Nc � 0 is

accidental, in fact, the value of hJP increases after includ-
ing a few channels more. The convergence is reached only
for Nc ¿ 10 when jhJP 2 1j 	 1025.

At the energies considered here, the scattering in the
L � 2 waves (JP � 11, 21, and 31) is very peripheral
and the corresponding phase shifts are small. They can
be calculated with good precision by considering only the
TABLE I. Eigenphase shifts d
J
LS (in degrees) and inelasticity

parameters hJP for the p-3He scattering waves 3P0 and 3P2 at
Ec.m. � 1.69 MeV, calculated with the AV18 potential and the
complex Kohn variational method. Nc is the number of channels
included in the CHH expansion of the wave functions (the case
Nc � 0 corresponds to including in the WF only the asymptotic
part).

3P0
3P2

Nc d
0
11 h02 Nc d

2
11 h22

0 3.9 1.0001 0 8.4 1.0000
2 4.2 1.0005 2 8.9 1.0002
4 4.8 1.0021 5 10.0 1.0021
6 6.3 1.0020 10 12.4 1.0005
8 6.5 1.0015 15 12.9 1.0004
9 6.6 1.0002 25 13.3 1.0002

18 6.9 1.0001 35 13.5 1.0001
45 7.0 1.0000 100 13.6 1.0000

asymptotic part in Eq. (2). The contribution of the waves
with L . 2 is very tiny and has been disregarded.

The predicted analyzing powers are compared with the
measurements in Fig. 1. The solid (dashed) curves cor-
respond to the AV18 (AV18UR) interaction model. The
main aspect to be seen in Fig. 1 is that the calculations
significantly underpredict the analyzing power by approxi-
mately 30% at 1.20 MeV and 40% at 1.69 MeV. Similar
results have previously been seen and well documented for
N-d scattering. We also see in Fig. 1 that the 3N interac-
tion has almost no effect on Ay .

In Table II the theoretical phase shift parameters at
Ec.m. � 1.20 MeV are compared with those obtained
in the energy-dependent phase shift analysis (PSA) of
Ref. [26] which well reproduce the observables shown
in Fig. 1. As can be seen, some phase shifts are well
reproduced by the theory. However, the 3P2 and 3P1 phase
shifts are both sizably underpredicted by the theory. For
some partial waves the errors are too large to make a
conclusive statement about the quality of the calculation.

The Ay observable is sensitive mainly to the P-wave
phase shifts. At Ec.m. � 1.20 MeV, for example, the Ay

TABLE II. S- and P-wave phase shift and mixing angle
parameters (in degrees) at Ec.m. � 1.2 MeV calculated with the
AV18 and the AV18UR potentials. The values obtained with
the energy dependent PSA of [26] are also shown.

Wave AV18 AV18UR PSA

1S0 233.3 231.3 227.4 6 3.5
3S1 228.8 227.1 226.5 6 0.6
3P0 4.1 3.2 2.6 6 0.6
3P1 8.1 7.4 10.1 6 0.5
3P2 7.7 6.9 8.9 6 0.5
1P1 6.5 5.5 4.2 6 1.5

e�12� 213.9 213.5 27.8 6 0.6
3741



VOLUME 86, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 23 APRIL 2001
0 30 60 90 120 150
θc.m. [deg]

0

100

200

300

dσ
/d

Ω
 [m

b/
sr

]

0 30 60 90 120 150 180
θc.m. [deg]

(b)(a)

FIG. 2. As in Fig. 1, but for the differential cross section. The
data points are from Ref. [27].

maximum increases by approximately 42% when the 3P2
phase shift is changed by 110%. On the other hand,
changing the 3P0 �3P1� phase by 110% decreases the Ay

maximum by 8 (6)%. This observable is in particular sensi-
tive to the combination of phase shifts D � 0.5�d�3P1� 1

d�3P2�� 2 d�3P0�. At Ec.m. � 1.20 MeV, the theoretical
calculation predicts D � 3.9± (3.8±) with (without) the 3N
force. The corresponding experimental result (from the
PSA) is D � 6.9± 6 0.9±.

It is interesting to note that the discrepancy between the
theoretical and experimental Ay is very much like that for
the N-d case. There the main problem is that the splitting
between the 4P1�2 phase and the average of the 4P3�2 and
4P5�2 phases is too small. For example, for p-d scattering
at Ec.m. � 2 MeV, the calculations give 0.5�d�4P3�2� 1

d�4P5�2�� 2 d�4P1�2� � 1.87±, whereas the phase shift
fits to Ay require a splitting of 2.61± [9]. It is plausible
to suspect that the Ay problems for N-d and p-3He both
arise from the same deficiency in the nuclear Hamiltonian.
Investigations in this direction are actively being pursued.

At the energies studied here old differential cross sec-
tion data exist [27]. The theoretical estimates are com-
pared with these data in Fig. 2. Overall the agreement
is good, especially in the minimum region, but at large
angles a small discrepancy is seen. This discrepancy can
once again be traced to the underprediction of the calcu-
lated 3P2 and 3P1 phase shifts. For this observable the in-
clusion of the 3N force produces small but non-negligible
effects. Finally, there are also some measurements of the
3He analyzing power in the energy range of interest [28].
For this observable, the theoretical estimates are again be-
low the data, but unfortunately the experimental uncertain-
ties are too large to make a definitive statement.
3742
In summary, we have performed calculations of low-
energy p-3He scattering observables, employing a realistic
interaction with a 3N force, and including the effects of P
and D waves. A comparison with new proton analyzing
power measurements demonstrates that the Ay puzzle also
exists in the 4N system.
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