1) Some short questions:

(a) For each of the following, state whether the magnetic force is attractive, repulsive or zero.

Answer: Attractive

ii) Two loops of wire:

Answer: Repulsize

(b) Find the magnitude and direction of the net magnetic field at the point P.

field from upper wire into page " lower 11 out of "

$$B_{u} = \frac{u_{0} I}{2\pi r} = \frac{(4\pi \times 10^{-7})}{2\pi} \frac{10A}{0.10m} = 2.0 \times 10^{-5} T$$

$$B_{0} = \frac{(4\pi \times 10^{-7})}{2\pi} \frac{10A}{0.05m} = 4 \times 10^{-5} T$$
M

Magnitude: 2×10^{-5}

BIOT = 4x10-5 T - 2x10-5T

Direction: out of page

- (c) A solenoid with a radius of 5 cm has 2000 loops of wire and is 50 cm long. loop, radius 8 cm i) Find the magnetic field inside the solenoid
 - when the current is 10 A. B= 40 n I = 40 2000 · 10A

Answer: 5.03×10^{-2} T

ii) Find the magnitude of the induced EMF in the loop of wire if the solenoid current goes The field exists only inside the solenoid from 0 to $10\,\mathrm{A}$ in 3 seconds.

 $\Phi = \text{mag flux } \Theta = 10 \text{ A} = B \cdot A = (5.03 \times 10^{-2} \text{ T})(\pi)(0.05 \text{ m})^2$ $=3.95\times10^{-4}$ T·m²

$$\mathcal{E} = N \stackrel{\Delta \Phi}{\Delta t} = (1) \frac{(3.95 \times 10^{-4})}{35}$$

Answer: $1.32 \times 10^{-4} \text{ V}$

iii) Show with an arrow in the drawing above the direction of the induced current in the The induced current needs to produce a field loop. to the left

2) In the circuit shown, the current I_1 is 0.05 A. Find I_2 and I_3 .

1) Write the loop equation for the left-hand inner loop

$$I_2 \cdot 30\Omega = 9V - I_1 \cdot 60\Omega = 9V - (0.05A)(60\Omega) = 6V$$

 $I_2 = 6V/30\Omega = 0.20 A$

2) Use the junction rule
$$I_1 + I_3 = I_2$$

 $I_3 = I_2 - I_1 = 0.20 A - 0.05 A$

20 cm

3) An electron moving at a speed of 6×10^5 m/s enters a region of space in which there is a uniform and constant magnetic field. The electron follows a circular path as shown in the drawing. Find the magnitude and direction of the magnetic field that produces this motion.

 $= 3.42 \times 10^{-5} \text{T}$

The radius of curvature in a uniform

The radius of curvature in a unitorn field is
$$r = \frac{mv}{gB}$$
 so
$$B = \frac{mv}{g \cdot r} = \frac{(9.11 \times 10^{-31} \text{kg})(6 \times 10^{5} \text{m/s})}{(1.6 \times 10^{-19} \text{C})(0.1 \text{m})}$$

$$g = -1.6 \times 10^{-19} \text{C}$$
 $m = 9.11 \times 10^{-31} \text{kg}$

Cfield region

By the usual right hand rule Remember that q is negative. B into the page gives UxB upward => Magnitude: 3.42×10^{-5} T F= g TxB downward as needed

Direction: Into page

 $\mathcal{E}_{TMT} = 50 \times 1.125 V = 56.25 V$ 5.625 A

5) A series LRC circuit has a resistance of $0.2\,\Omega$ and an inductance of $0.1\,\mathrm{mH}$.

 $= 2.69 \times 10^{-10} F$

(a) What value of C is needed to tune the resonant frequency of the circuit to the frequency of an AM radio station that broadcasts at $f = 970 \, \mathrm{kHz}$?

The resonance and this is
$$X_{L} = X_{C} \Rightarrow \frac{1}{2\pi f} = \frac{1}{\sqrt{L}} = \frac{1}{LC} = (2\pi f)^{2}$$

$$C = \frac{1}{L} \cdot (2\pi f)^{2} = \frac{1}{L} \cdot (2\pi f)^{2} = (970 \times 10^{3})^{2}$$

0.20

0.1mH

ww

(b) Suppose this circuit is driven at the resonant frequency by a weak sinusoidal voltage $v_{\text{RMS}} = 10^{-5} \,\text{V}$. Find the resulting RMS current in the circuit.

on Resonance
$$X_{L} = X_{C}$$
 so $Z = [R^{2} + (X_{L} - X_{C})^{2}]^{\frac{1}{2}} = R$

$$V = IR \rightarrow V_{RMS} = I_{RMS} \cdot Z$$

$$I_{RMS} = 10^{-5} V / 0.2\Omega$$

Sx10-5A

(c) Use $\Delta V_L = IX_L$ to find the RMS voltage across the inductor.

$$X_{L} = 2\pi f \cdot L = 2\pi (970 \times 10^{3} \text{Hz}) (10^{-4} \text{H}) = 609.552$$

$$\Delta V = (5 \times 10^{-5} \text{A}) (609.5 \Omega)$$

$$3.05 \times 10^{-2} \text{V}$$