Homework 2 Solutions

(a) Let event 1 have coordinates $x_{1}=y_{1}=z_{1}=t_{1}=0$ and event 2 have coordinates $x_{2}=100 \mathrm{~mm}, y_{2}=z_{2}=t_{2}=0 . \operatorname{In} S^{\prime}, x_{1}^{\prime}=\gamma\left(x_{1}-v t_{1}\right)=0, y_{1}^{\prime}=y_{1}=0, z_{1}^{\prime}=z_{1}=0$, and $t_{1}^{\prime}=\gamma\left[t_{1}-\left(\frac{v}{c^{2}}\right) x_{1}\right]=0$, with $\gamma=\left[1-\frac{v^{2}}{c^{2}}\right]^{-1 / 2}$ and so $\gamma=\left[1-(0.70)^{2}\right]^{-1 / 2}=1.40$. In system $S^{\prime}, x_{2}^{\prime}=\gamma\left(x_{2}-v t_{2}\right)=140 \mathrm{~m}, y_{2}^{\prime}=z_{2}^{\prime}=0$, and

$$
t_{2}^{\prime}=\gamma\left[t_{2}-\left(\frac{v}{c^{2}}\right) x_{2}\right]=\frac{(1.4)(-0.70)(100 \mathrm{~m})}{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}=-0.33 \mu \mathrm{~s} .
$$

(b) $\Delta x^{\prime}=x_{2}^{\prime}-x_{1}^{\prime}=140 \mathrm{~m}$
(c) Events are not simultaneous in S^{\prime}, event 2 occurs $0.33 \mu s$ earlier than event 1.

1-29 (a) A spaceship, reference frame S^{\prime}, moves at speed v relative to the Earth, whose reference frame is S. The space ship then launches a shuttle craft with velocity v in the forward direction. The pilot of the shuttle craft then fires a probe with velocity v in the forward direction. Use the relativistic compounding of velocities as well as its inverse transformation: $u_{x}^{\prime}=\frac{u_{x}-v}{1-\left(u_{x} v / c^{2}\right)}$, and its inverse $u_{x}=\frac{u_{x}^{\prime}+v}{1+\left(u_{x}^{\prime} v / c^{2}\right)}$. The above variables are defined as: v is the spaceship's velocity relative to S, u_{x}^{\prime} is the velocity of the shuttle craft relative to S^{\prime}, and u_{x} is the velocity of the shuttle craft relative to S. Setting u_{x}^{\prime} equal to v, we find the velocity of the shuttle craft relative to the Earth to be: $u_{x}=\frac{2 v}{1+(v / c)^{2}}$.
(b) If we now take S to be the shuttle craft's frame of reference and S^{\prime} to be that of the probe whose speed is v relative to the shuttle craft, then the speed of the probe relative to the spacecraft will be, $u_{x}^{\prime}=\frac{2 v}{1+(v / c)^{2}}$. Adding the speed relative to S yields: $u_{x}=\left[\frac{3+(v / c)^{2}}{1+2(v / c)^{2}}\right]=\frac{3 v+v^{3} / c^{3}}{1+2 v^{2} / c^{2}}$. Using the Galilean transformation of velocities, we see that the spaceship's velocity relative to the Earth is v, the velocity of the shuttle craft relative to the space ship is v and therefore the velocity of the shuttle craft relative to the Earth must be $2 v$ and finally the speed of the probe must be $3 v$. In the limit of low $\left(\frac{v}{c}\right)^{2}, u_{x}$ reduces to $3 v$. On the other hand, using relativistic addition of velocities, we find that $u_{x}=c$ when $v \rightarrow c$.

1-36 Let Suzanne be fixed in reference from S and see the two light-emission events with coordinates $x_{1}=0, t_{1}=0, x_{2}=0, t_{2}=3 \mu s$. Let Mark be fixed in reference frame S^{\prime} and give the events coordinate $x_{1}^{\prime}=0, t_{1}^{\prime}=0, t_{2}^{\prime}=9 \mu \mathrm{~s}$.
(a) Then we have

$$
t_{2}^{\prime}=\gamma\left(t_{2}-\frac{v}{c^{2}} x_{2}\right)=9 \mu \mathrm{~s}=\frac{1}{\sqrt{1-v^{2} / c^{2}}}(3 \mu \mathrm{~s}-0)=\sqrt{1-\frac{v^{2}}{c^{2}}}=\frac{1}{3}=\frac{v^{2}}{c^{2}}=\frac{8}{9}=v=0.943 c .
$$

(b) $\quad x_{2}^{\prime}=\gamma\left(x_{2}-v t_{2}\right)=3\left(0-0.943 c \times 3 \times 10^{-6} \mathrm{~s}\right)\left(\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{c}\right)=2.55 \times 10^{3} \mathrm{~m}$

1-38 Let the S be the Earth frame of reference. Then $v=-0.7 c$. The components of the velocity of the first spacecraft are $u_{x}=(0.6 c) \cos 50^{\circ}=0.386 c$ and $u_{y}=(0.6 c) \sin 50^{\circ}=0.459 c$. As measured from the S^{\prime} frame of the second spacecraft,

$$
\begin{aligned}
& u_{x}^{\prime}=\frac{u_{x}-v}{1-u_{x} v / c^{2}}=\frac{0.386 c-(-0.7 c)}{1-(0.386 c)(-0.7 c) / c^{2}}=\frac{1.086 c}{1.27}=0.855 c \\
& u_{y}^{\prime}=\frac{u_{y}}{\gamma\left(1-u_{x} v / c^{2}\right)}=\frac{0.459 \sqrt{1-(0.7)^{2}}}{1-(0.386)(0.7)}=\frac{0.459 c(0.714)}{1.27}=0.258 c
\end{aligned}
$$

The magnitude of u^{\prime} is $\sqrt{(0.855 c)^{2}+(0.285 c)^{2}}=0.893 c$, and its direction is at $\tan ^{-1} \frac{0.258 c}{0.855 c}=16.8^{\circ}$ above the x^{\prime}-axis.

2-1
$p=\frac{m v}{\left[1-\left(v^{2} / c^{2}\right)\right]^{1 / 2}}$
(a) $\quad p=\frac{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)(0.01 \mathrm{c})}{\left[1-(0.01 c / c)^{2}\right]^{1 / 2}}=5.01 \times 10^{-21} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
(b) $\quad p=\frac{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)(0.5 \mathrm{c})}{\left[1-(0.5 \mathrm{c} / \mathrm{c})^{2}\right]^{1 / 2}}=2.89 \times 10^{-19} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
(c) $\quad p=\frac{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)(0.9 \mathrm{c})}{\left[1-(0.9 c / \mathrm{c})^{2}\right]^{1 / 2}}=1.03 \times 10^{-18} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
(d) $\frac{1.00 \mathrm{MeV}}{c}=\frac{1.602 \times 10^{-13} \mathrm{~J}}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=5.34 \times 10^{-22} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ so for (a)

$$
p=\frac{\left(5.01 \times 10^{-21} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)(100 \mathrm{MeV} / \mathrm{c})}{5.34 \times 10^{-22} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}=9.38 \mathrm{MeV} / \mathrm{c}
$$

Similarly, for (b) $p=540 \mathrm{MeV} / \mathrm{c}$ and for (c) $p=1930 \mathrm{MeV} / \mathrm{c}$.
(a) $\quad E_{R}=m c^{2}=\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}=1.503 \times 10^{-10} \mathrm{~J}=939.4 \mathrm{MeV}$ (Numerical round off gives a slightly larger value for the proton mass)
(b) $E=\gamma m c^{2}=\frac{1.503 \times 10^{-10} \mathrm{~J}}{\left(1-(0.95 \mathrm{c} / \mathrm{c})^{2}\right)^{1 / 2}}=4.813 \times 10^{-10} \mathrm{~J} \approx 3.01 \times 10^{3} \mathrm{MeV}$
(c) $K=E-m c^{2}=4.813 \times 10^{-10} \mathrm{~J}-1.503 \times 10^{-10} \mathrm{~J}=3.31 \times 10^{-10} \mathrm{~J}=2.07 \times 10^{3} \mathrm{MeV}$
(a) $\quad K=\gamma m c^{2}-m c^{2}=V q$ and so, $\gamma^{2}=\left(1+\frac{V q}{m c^{2}}\right)^{2}$ and $\frac{v}{c}=\left\{1-\left(1+\frac{V q}{m c^{2}}\right)^{-2}\right\}^{1 / 2}$

$$
\frac{v}{c}=\left\{1-\frac{1}{1+\left(5.0 \times 10^{4} \mathrm{eV} / 0.511 \mathrm{MeV}\right)^{2}}\right\}^{1 / 2}=0.4127
$$

or $v=0.413 c$.
(b) $\quad K=\frac{1}{2} m v^{2}=V q$

$$
v=\left(\frac{2 V q}{m}\right)^{1 / 2}=\left\{\frac{2\left(5.0 \times 10^{4} \mathrm{eV}\right)}{0.511 \mathrm{MeV} / c^{2}}\right\}^{1 / 2}=0.442 c
$$

(c) The error in using the classical expression is approximately $\frac{3}{40} \times 100 \%$ or about 7.5% in speed.

2-20 $\Delta m=m-m_{p}-m_{e}=1.008665 u-1.007276 u-0.0005485 u=8.404 \times 10^{-4} u$ $E=c^{2}\left(8.404 \times 10^{-4} \mathrm{u}\right)=\left(8.404 \times 10^{-4} \mathrm{u}\right)(931.5 \mathrm{MeV} / \mathrm{u})=0.783 \mathrm{MeV}$.

The energy that arrives in one year is

$$
E=\mathscr{P D} \Delta t=\left(1.79 \times 10^{17} \mathrm{~J} / \mathrm{s}\right)\left(3.16 \times 10^{7} \mathrm{~s}\right)=5.66 \times 10^{24} \mathrm{~J}
$$

Thus, $m=\frac{E}{c^{2}}=\frac{5.66 \times 10^{24} \mathrm{~J}}{\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=6.28 \times 10^{7} \mathrm{~kg}$.

